Università degli studi di Ferrara Dipartimento di Fisica

Metodologie ottiche per la diagnostica di fasci atomici polarizzati intensi di idrogeno e deuterio

Luca Barion

15/07/2005

Proprietà del protone (attualmente conosciute)

Caratteristiche:

- Massa 1.67262158 × 10⁻²⁷ kg (938 MeV/c²)
- Carica elettrica +e (1.602 × 10⁻¹⁹ C)
- Spin ¹/₂
- Eccezionalmente stabile ($\tau > 10^{32}$ anni)
- Non è puntiforme

Struttura interna:

- Composto da 3 quark di valenza
- Quarks/anti-quarks del mare
- Forze di colore (gluoni)

Gli esperimenti di scattering profondamente inelastico (DIS) rivestono grande importanza nello studio della struttura interna del protone

Per lo studio delle funzioni di struttura sono necessari bersagli e fasci polarizzati

> Solidi (alta densità,ma diluiti) Gassosi (bassa densità,ma puri)

Idrogeno atomico polarizzato (nucleare)

Limite è la densità (problema della ricombinazione)

Due strade per migliorare:

a)Bersagli molecolari polarizzati

b)Incrementare la densità, mantenendo contenuta la ricombinazione

Light Induced Drift (LID)

• Laser a CO₂

Sistema di diagnostica ottica (OptMon)

Light Induced Drift (LID)

Distribuzione in velocità di particelle all'interno di una "sottile" cella tubolare

Vz

٧_z

 ω_L Frequenza dei fotoni ω_G Freq. di assorbimento gas

6⁴

 $\mathbf{g}_{\mathbf{n}}$

Particelle

eccitate

Particelle non eccitate

ź

Schema setup sperimentale

- S1 Specchio sferico (10 m CC)
- S2 Specchio piano parzialmente trasparente
- S3, S4 Specchi piani
- D1, D2 Detectors

Distribuzione della densità delle molecole attive

 N_A , N_B densità molecole attive D coefficiente di diffusione v = |u| (modulo della velocità di deriva)

Velocità di deriva in funzione del detuning

Fonte http://www.iae.nsk.su/~lab12/lid/lid_exp.htm

Ipotesi di setup per ottenere un getto molecolare

Laser a CO₂

Schema Laser a CO₂

Livelli energetici Azoto ed Anidride carbonica (principio di eccitazione)

Spettro del laser a CO₂

Fonte: http://www.iqe.ethz.ch/irp/Homepage/Gallery/mobilesystem/co2%20measurement.jpg

Detector piezoelettrico

Tempo di risposta del detector piezoelettrico

Caratteristiche Laser CO₂

Consumi

- Elettrico
- Gas:
 - · Anidride carbonica
 - · Azoto
 - \cdot Elio
- Acqua
- Vuoto

sccm 50 l/ora pompa prevuoto

9.6 – 10.6 μm

Caratteristiche ottiche

- Potenza luminosa
- Diametro fascio
- Lunghezza d'onda

7 W 3 mm

1 KW

sccm

sccm

Sistema di diagnostica ottica (OptMon)

Schema Atomic Beam Source

MW: dissociatore a microonde

1: primo stadio di raffreddamento ad acqua (13 °C)

- 2: secondo stadio di raffreddamento collar (-200 °C)
- **3:** terzo stadio di raffreddamento nozzle (75 K)

Schema di estrazione della luce dall'ABS

D

D	Detector
F1, F2	Fenditure
L1, L2	Lenti convergenti
R	Reticolo di diffrazione
S1, S3, S4	Specchi piani
S2	Specchio sferico concavo

Schema del sistema di diagnostica ottica (OptMon)

Sistema di diagnostica ottica

Fotodiodo

Fenditure

Obbiettivo-

Trigger ottico

Reticolo

Esempio di spettro acquisito dall'OptMon

Spettro OptMon

- 1 α dall'OptMon(viola) e dal QMA(rosso)
 2 Temp. O-ring [°C] 3 Temp. collar [°C]
 4 Segnale molec. QMA5 Segnale atom. QMA
 6 Frequenza del chopper in camera 3 [Hz]
 - **OptMon?** Ultimo spettro acquisito 8 Grafico di α
 - 9 Picco dell'acqua [un. arb.]
 - **10** Livello base [mV]
 - **11** Segnale atom. [un. arb.] **12** molecolare [mV]

Rilevazione di gas estranei (He)

Spettro standard & Spettro He (100 cc/min)

Flusso H2:75 sccmFlusso O2:2 sccmFlusso He:100 sccmPotenza microonde:800W

Rilevazione di gas estranei (N₂)

Spettro standard & Spettro N2 (12.5 cc/min)

Flusso H₂: 75 sccm Flusso O₂: 2 sccm Flusso N₂: 12.5 sccm Potenza microonde: 800W

Scansione con ossigeno

Acqua OptMon vs O2

Flusso H2:75 sccmPotenza microonde:800W

Confronto tra QMA ed OptMon

