

http://www.fz-juelich.de/ikp/pax

# Towards polarized antiprotons at FAIR

### Paolo Lenisa Università di Ferrara and INFN - ITALY

Ferrara, October 16th 2007

## Motivation



## PAX Collaboration

180 physicists 35 institutions (15 EU, 20 NON-EU)

### TIMELINE

| Jan. 04 | Letter of Intent for FAIR                                           |
|---------|---------------------------------------------------------------------|
| Jan. 05 | Technical Report for FAIR                                           |
| Nov. 05 | LoI to CERN-SPSC to perform spin-filtering experiments              |
|         | with antiprotons at the AD ring                                     |
| Apr. 06 | LoI to COSY-PAC for spin filtering experiments with protons at COSY |
| Sep. 06 | LoI to COSY-PAC for beam-depolarization studies                     |
| Jun. 07 | 2 weeks beam-lifetimes studies at COSY                              |
| Nov. 07 | 2 weeks polarization lifetime studies at COSY                       |

## Evaluation by QCD-PAC (March 2005)

... the PAC would like to stress again the uniqueness of the program with polarized anti-protons and polarized protons that could become available at GSI.

### **Recommendation of the STI of FAIR (Sept. 2005)** The STI requests R&D work to be continued on the proposed asymmetric collider

The STI requests R&D work to be continued on the proposed asymmetric collider experiment with both polarized anti-protons and protons:

-to demonstrate that the required luminosity for decisive measurements can be reached

- to demonstrate that a high degree of anti-proton polarisation can be reached

The STI believes that PAX should become part of the FAIR core research program based on its strong scientific merit once the open problems are convincingly solved.

## Polarized antiprotons

Long story! 1<sup>st</sup> workshop in Bodega Bay (1985)

Workshop on Polarized Antiprotons: Daresbury (UK) 29.08-31.08.07

Intense beam of polarized pbar never produced:

- Synchrotron radiation ~  $\mu(\gamma^4/R) \rightarrow \tau_{pol} \sim 10^7$  y in 20 TeV pbar ring
- Conventional methods (ABS) not applicable
- Polarized pbar from antilambda decay
  - I< 1.5.10<sup>5</sup> s<sup>-1</sup> (P ≈ 0.35)
- Pbar scattering off liquid H<sub>2</sub> target
  - I< 2.10<sup>3</sup> s<sup>-1</sup> (P ≈ 0.2)

Spin-filtering is the only succesfully tested technique

•Th. Walcher et al.:

05.2006: "An effective method for polarizing antiprotons"

Use of a polarized electron beam (withdrawn)

06.2007 "A surprising method for polarizing antiprotons"

Use of a polarized positron beam (withdrawn but...)

## Principle of spin-filtering

$$\sigma_{tot} = \sigma_0 + \sigma_{\perp} \cdot \vec{P} \cdot \vec{Q} + \sigma_{\parallel} \cdot (\vec{P} \cdot \vec{k}) (\vec{Q} \cdot \vec{k})$$
P beam polarization
Q target polarization
k || beam direction

For initially equally populated spin states:  $\uparrow$  (m=+ $\frac{1}{2}$ ) and  $\downarrow$  (m=- $\frac{1}{2}$ ) longitudinal case: transverse case:

$$\sigma_{tot\pm} = \sigma_0 \pm \sigma_i \cdot Q$$

$$\sigma_{tot\pm} = \sigma_0 \pm (\sigma_i + \sigma_{||}) \cdot Q$$

polarization

direction



## Principle of spin-filtering

$$\sigma_{tot} = \sigma_0 + \sigma_{\perp} \cdot \vec{P} \cdot \vec{Q} + \sigma_{||} \cdot (\vec{P} \cdot \vec{k}) (\vec{Q} \cdot \vec{k})$$
P beam polarization  
Q target polarization  
k || beam direction

For initially equally populated spin states:  $\uparrow$  (m=+ $\frac{1}{2}$ ) and  $\downarrow$  (m=- $\frac{1}{2}$ )

transverse case:

longitudinal case:

$$\sigma_{tot\pm} = \sigma_0 \pm \sigma_i \cdot Q \qquad \sigma_{tot\pm} = \sigma_0 \pm (\sigma_i + \sigma_{||}) \cdot Q$$



## 1992 Filter Test at TSR with protons





## Polarized atomic beam source



## 1992 Filter Test at TSR with protons





### Two interpretations of FILTEX result

**Observed** polarization build-up: dP/dt =  $\pm$  (1.24  $\pm$  0.06) x 10<sup>-2</sup> h<sup>-1</sup> P(t)=tanh(t/T<sub>1</sub>), 1/T<sub>1</sub>= $\sigma_1$ Qd<sub>+</sub>f

 $\sigma_1 = 72.5 \pm 5.8 \text{ mb}$ 

Spin-filtering works! But how? 1994. Meyer and Horowitz: three distinct effects

1. Selective removal through scattering beyond  $\theta_{acc}$ =4.4 mrad ( $\sigma_{R_1}$ =83 mb)

- 2. Small angle scattering of target prot. into ring acceptance ( $\sigma_{s\perp}$ =52 mb)
- 3. Spin-transfer from pol. el. of target atoms to stored prot. ( $\sigma_{E\perp}$ =-70 mb)

 $\sigma_1 = \sigma_{R\pm} + \sigma_{S\pm} + \sigma_{E\pm} = 65 \text{ mb}$ 

2005. Milstein & Strakhovenko + Nikolaev & Pavlov: only one effect Only p-p scattering contributes to polarization buildup ( $\sigma_{R\perp}$ =85.6 mb) No contribution from polarized electrons

Note: Walcher's proposals regarded spin-transfer

## Spin-filtering: Present situation

Spin filtering works, but:

- 1. Controversial interpretations of FILTEX experiment
  - Further experimental tests necessary
  - How does spin-filtering works?
  - Which role do electrons play?
  - $\rightarrow\,$  Tests with protons at COSY

2. No data to predict polarization from fitering with antiprotons.  $\rightarrow$  Measurements with antiprotons at AD/CERN

### Spin-filtering studies with protons (COSY-FZJ)



### **Objective:**

- Understanding of spin-filtering mechanism:
- Disentangle electromagnetic and hadronic contributions to the polarizing cross section

How to disentangle hadronic and electromagnetic contributions to  $\sigma_{eff}$ ?

Method 1: Polarization build-up experiments

Injection of different combinations of hyperfine states

Null experiments possible:

•Pure electron polarized target ( $P_z = 0$ ), and

•Pure nuclear polarized target (P\_=0)

| Inj. states | P <sub>e</sub> | Pz | Interaction | Holding                  | field       |
|-------------|----------------|----|-------------|--------------------------|-------------|
| 1>          | +1             | +1 | Elm. + had. | transv. + longit.        | weak (20 G) |
| 1> +  4>    | 0              | +1 | only had.   | nly had.                 |             |
| 1> +  2>    | +1             | 0  | only elm.   | - iongituainai strong (3 |             |

Strong fields can be applied only longitudinally (minimal beam interference)

- Snake necessary

Method 1: Polarization build-up experiments

## Experimental setup



- Low-beta section
- Polarized target (former HERMES target)
- Detector
- Snake
- Commissioning of AD setup

Method 1: Polarization build-up experiments

### Low beta section

 $\beta_{x,y}^{\text{new}} = 0.3 \text{ m} \rightarrow \text{increase}$  in density with respect to ANKE: factor 30

- Lower buildup time, higher rates
- Larger polarization buildup rate due to higher acceptance
- Use of former HERMES target



### Superconducting quadrupoles necessary

Method 1: Polarization build-up experiments

### ANKE vs new IP: Polarization

### Expectations based on Budker-Jülich for:

- T = 40 MeV
- N<sub>inj</sub>=1.5x10<sup>10</sup> protons



| PIT    | Filter. time | Polar. | Total rate                          | Meas. Time (∆P/P=10%) |
|--------|--------------|--------|-------------------------------------|-----------------------|
| ANKE   | 2τ = 16 h    | 1.2 %  | 7.5×10 <sup>2</sup> s <sup>-1</sup> | 44 min                |
|        | 5τ = 42 h    | 3.5 %  | 5×10 s-1                            | 26 min                |
| New IP | 2τ = 5 h     | 16 %   | 2.2×10 <sup>4</sup> s <sup>-1</sup> | 1 s                   |
|        | 5τ = 13 h    | 42 %   | 1.5×10 <sup>3</sup> s <sup>-1</sup> | < 1 s                 |

Method 2: Depolarization studies

Meyer: "If polarized electrons polarize an initially unpolarized beam, then, unpolarized electrons should depolarize an initially polarized beam!"

Aim: test of the electromagnetic contribution



## Beam-lifetime studies at COSY (june '07)



### Up to third order





Method 2: Depolarization studies

Meyer: "If polarized electrons polarize an initially unpolarized beam, then, unpolarized electrons should depolarize an initially polarized beam!"

Aim: test of the electromagnetic contribution



Method 2: Depolarization studies

## **Depolarization Studies using unpolarized Electrons**

• Use electrons in ecooler instead of target electrons to observe depolarization

Motivation: Walcher-Arenhövel estimation of  $\sigma_{_{ep}}$  spin transfer at low-relative energy



## Ecooler Settings for T\_=45 MeV



## Cycle for Depolarization Study



P. Lenisa

## Polarimetry





c.m. theta / degree

## Upper limit for depolarization cross section



## AD ring at CERN

Study of spin filtering in pbar-p (pbar-d) scattering



#### Measurement of effective polarization buildup cross-section

- Both transverse and longitudinal
- Variable acceptance at target
- Test also polarized D target

First ever measurement for spin correlations in pbar-p (and pbar-D)

### Theoretical estimate of Antiproton Beam Polarization (Hadronic Interaction: Longitudinal Spin Filtering)



## Interaction region for spin-filtering studies



## Low beta section



### Superconducting quadrupoles necessary

## Storage cell design

### Pbar beam at AD:







# Openable storage cell required

## Storage cell design



 $5 \,\mu\text{m}$  Teflon foil (T<sub>rec</sub> < 8MeV)

## Detector concept

Will measure beam polarization by using the (measured) analysing power of:
 •pbar-p elastic



## Timeline

| Fall 2007/ Spring 2008 | Technical proposal to COSY-PAC for spin filtering   |
|------------------------|-----------------------------------------------------|
|                        | Technical proposal to SPSC for spin filtering at AD |
| 2007-2008              | Design and construction phase                       |
| 2009                   | Spin-filtering studies at COSY                      |
|                        | Commissioning of AD experiment                      |
| 2010                   | Installation at AD                                  |
| 2010-2011              | Spin-filtering studies at AD                        |

| June 23-25, 2008                   | WE Heraeus Seminar at Bad-Honnef |  |  |  |
|------------------------------------|----------------------------------|--|--|--|
| "Polarized Antiprotons"            |                                  |  |  |  |
| (chair: P. Lenisa and F. Rathmann) |                                  |  |  |  |