

CEO saclay

HADRON STRUCTURE and RADIATIVE CORRECTIONS

Egle Tomasi-Gustafsson Saclay, France

Nucleon Structure at FAIR, Ferrara, 15 – X – 2007

PLAN

Experimental View and Models

dapnia

- space-like (ep-scattering)
- *time-like (e+e- or ppbar annihilation)*
- saclay Model Independent Statements
 - Symmetry properties of fundamental interactions
 - Kinematical constraints
 - Exact Calculations ?
 - QED 'exact' calculations
 - Radiative corrections

Nucleon Structure and/or Reaction Mechanism?

dapnia

- Characterize the internal structure of a particle (\neq point-like)
- In a P- and T-invariant theory, the EM structure of a particle
- saclay of spin S is defined by 2S+1 form factors.
 - Neutron and proton form factors are different.
 - Elastic form factors contain information on the hadron ground state.
 - Playground for theory and experiment.
 - New interest due to polarization data

Crossing Symmetry $e^- + h \rightarrow e^- + h$ Scattering and annihilation channels: dapnia e⁻(k₁) $e^{-}(k_2)$ - Described by the same amplitude : γ(q) $|\overline{\mathcal{M}}(e^{\pm}h \to e^{\pm}h)|^2 = f(s,t) = |\overline{\mathcal{M}}(e^+e^- \to \overline{h}h)|^2,$ saclay - function of two kinematical variables, s and t h(p₂ h(p₁ $s = (k_1 + p_1)^2$ $t = (k_1 - k_2)^2$ $e^- + e^+ \rightarrow \overline{h} + h$ - which scan different kinematical regions $k_2 \rightarrow -k_2$ $p_2 \rightarrow -p_1$ $\frac{\cos^2\tilde{\theta}}{t} = 1 + \frac{st + (s - M^2)^2}{t(\frac{t}{4} - M^2)} \rightarrow 1 + \frac{ctg^2\frac{\theta}{2}}{1 + \tau}$

The nucleon form factors

The Rosenbluth separation (1950) Elastic ep cross section (1-γ exchange) dapnia $\frac{d\sigma}{d\Omega_e} = \sigma_M \left[2\tau G_M^2 \tan^2 \frac{\theta_e}{2} + \frac{G_E^2 + \tau G_M^2}{1 + \tau} \right]$ saclay • point-like particle: σ Mott q^2 fixed $\sigma_M = \frac{4\alpha^2}{(-q^2)^2} \frac{\epsilon_2^3}{\epsilon_1} \cos^2 \frac{\theta_e}{2} = \frac{4\alpha^2}{(-q^2)^2} \frac{\epsilon_2^2 \cos^2 \frac{\theta_e}{2}}{1 + 2\frac{\epsilon_1}{2} \sin^2 \frac{\theta_e}{2}}, \ \tau = \frac{Q^2}{4m}$ $G_{\rm F}^2 + \tau G$ $2\tau G_{M}^{2}$ $\sigma_{red} = \frac{d\Omega_e}{\frac{\alpha^2}{\alpha^2} \left(\frac{\epsilon_2}{\alpha}\right)^2}$ Linearity of the *reduced cross section* 0

The polarization induces a term in the cross section proportional to $G_{F}G_{M}$

Polarized beam and target or

polarized beam and recoil proton polarization

E. T-G. and M. P. Rekalo, Europhys. Lett. 55, 188 (2001)

Space-like region

dapnia

saclay

- 3) "standard" dipole function for the nucleon magnetic FFs GMp and GMn
- 2) linear deviation from the dipole function for the electric proton FF GEp
- 3) contradiction between polarized and unpolarized measurements

4) non vanishing electric neutron FF, GEn.

Time-like region

dapnia

4) No individual determination of GE and GM

5) Assume GE=GM (valid only at threshold) VMD or pQCD inspi parametrizations (for p and n):

$$G_{M} = \frac{A}{s^{2} [\pi^{2} + \ln^{2}(s/\Lambda^{2})]} \quad \stackrel{\text{A}(p) = 56.3 \text{ GeV}^{4}}{\text{A}(n) = 77.15 \text{ GeV}^{4}}$$

 Λ =0.3 GeV is the QCD scale parameter

- 3) TL nucleon FFs are twice larger than SL FFs
- 4) Recent data from Babar (radiative return) :
 - interesting structures in the Q² dependence of GM(=GE)
 - GM≠GE.

Spin Observables $e(\overline{k}_1 = \overline{k})_{\pi}$ Analyzing power, A θ p($\vec{p}_2 = -\vec{p}$) $\overline{p}(\vec{p}_1 = \vec{p})$ dapnia $\frac{d\sigma}{d\Omega}(P_y) = \left(\frac{d\sigma}{d\Omega}\right)_a [1 + \mathcal{A}P_y],$ $\swarrow e^{\dagger}(\vec{k}) = -\vec{k}$ saclay $\mathcal{A} = \frac{\sin 2\theta Im G_E^* G_M}{D_* / \tau}, \ D = |G_M|^2 (1 + \cos^2 \theta) + \frac{1}{\tau} |G_E|^2 \sin^2 \theta$ Double spin observables $\left(\frac{d\sigma}{d\Omega}\right) A_{xx} = \sin^2\theta \left(|G_M|^2 + \frac{1}{\tau}|G_E|^2\right) \mathcal{N},$ $\left(\frac{d\sigma}{d\Omega}\right) A_{yy} = -\sin^2 \theta \left(|G_M|^2 - \frac{1}{\tau}|G_E|^2\right) \mathcal{N},$ $\left(\frac{d\sigma}{d\Omega}\right) A_{zz} = \left[(1 + \cos^2 \theta) |G_M|^2 - \frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \mathcal{N},$

 $\left(\frac{d\sigma}{d\Omega}\right)_{0}A_{xz} = \left(\frac{d\sigma}{d\Omega}\right)_{0}A_{zx} = \frac{1}{\sqrt{\tau}}\sin 2\theta ReG_{E}G_{M}^{*}\mathcal{N}.$

Ferrara, 15-X-2007 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON

Issues

•Some models (IJL 73, Di-quark, soliton..) predicted such behavior before the data appeared

BUT

saclay

dapnia

•Simultaneous description of the four ...

•...in the space-like and in the timelike regions

•Consequences for the light ions description

- •When pQCD starts to apply?
- •Source of the discrepancy

Perspectives in Time-Like region

Time-like observables: $|\mathbf{G}_{\mathsf{E}}|^2$ and $|\mathbf{G}_{\mathsf{M}}|^2$. -The cross section for $\overline{p} + p \rightarrow e^+ + e^-$ (1 γ -exchange): $\frac{\mathrm{dapnia}}{\mathrm{CO}} = \frac{d\sigma}{d(\cos\theta)} = \frac{\pi\alpha^2}{8m^2\sqrt{\tau-1}} \left[\tau |\mathbf{G}_M|^2 (1 + \cos^2\theta) + |\mathbf{G}_E|^2 \sin^2\theta\right]$ saclay θ : angle between e^- and \overline{p} in cms.

A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Il Nuovo Cimento XXIV, 170 (1962)
B. Bilenkii, C. Giunti, V. Wataghin, Z. Phys. C 59, 475 (1993).
G. Gakh, E.T-G., Nucl. Phys. A761,120 (2005).

As in SL region:

- Dependence on q² contained in FFs
- Even dependence on $\cos^2\theta$ (1 γ exchange)
- No dependence on sign of FFs
- Enhancement of magnetic term

but TL form factors are complex!

Time-like observables: $|\mathbf{G}_{\mathsf{F}}|^2$ and $|\mathbf{G}_{\mathsf{M}}|^2$.

dapnia

-The Total Cross Section

saclay

$$\sigma(q^2) = \mathcal{N}\frac{8}{3}\pi \left[2|G_M|^2 + \frac{1}{\tau}|G_E|^2 \right]. \quad \mathcal{N} = \frac{\alpha^2}{4\sqrt{q^2(q^2 - 4m^2)^2}}$$

-The angular asymmetry, R

$$\frac{d\sigma}{d(\cos\theta)} = \sigma_{0} \left[1 + \mathcal{R} \cos^{2}\theta \right], \ \mathcal{R} = \frac{\tau |G_{M}|^{2} - |G_{E}|^{2}}{\tau |G_{M}|^{2} + |G_{E}|^{2}}$$
Cross section at 90^o

Due to limited statistics, no experimental determination of individual FFs in TL region, yet: $G_E = G_M$ or $G_E = 0$

Predictions for PANDA

Two-photon exchange?

Electric proton FF

dapnia

(e)

saclay

- Different results with different experimental methods !!
 - Both methods based on the same formalism
 - Experiments repeated

New mechanism?

- •1 γ -2 $\gamma \sim \alpha = e^{2}/4\pi = 1/137$
- •1970's: Gunion, Lev...

Two-Photon exchange

dapnia

saclay

•1 γ -2 γ interference is of the order of α =e²/4 π =1/137 (in usual calculations of radiative corrections, one photon is 'hard' and one is 'soft')

•In the 70's it was shown [*J. Gunion and L. Stodolsky, V. Franco, F.M. Lev, V.N. Boitsov, L. Kondratyuk and V.B. Kopeliovich, R. Blankenbecker and J. Gunion*] that, at large momentum transfer, due to the sharp decrease of the FFs, if the momentum is shared between the two photons, the 2 γ - contribution can become very large.

1γ-2γ interference

M. P. Rekalo, E. T.-G. and D. Prout, Phys. Rev. C (1999)

dapnia

saclay

The 1γ-2γ interference destroys the linearity of the Rosenbluth plot!

Precision Rosenbluth Measurement of the Proton Elastic Form Factors

Parametrization of 2*γ***-contribution for e+p**

Two-Photon exchange

dapnia

saclay

The 2γ amplitude is expected to be mostly imaginary.
In this case, the 1γ-2γ interference is more important in time-like region, as the Born amplitude is complex.

Unpolarized cross section

dapnia

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4q^2} \sqrt{\frac{\tau}{\tau - 1}} D_t$$

saclay

4

$$\begin{split} D &= (1 + \cos^2 \theta) (|G_M|^2 + 2ReG_M \Delta G_M^*) + \frac{1}{\tau} \sin^2 \theta (|G_E|^2 + 2ReG_E \Delta G_E^*) + \\ &\quad 2\sqrt{\tau(\tau - 1)} \cos \theta \sin^2 \theta Re(\frac{1}{\tau}G_E - G_M)F_3^*. \end{split}$$

2γ–contribution:

Induces four new terms
Odd function of *θ*:
Does not contribute at *θ* =90°

Symmetry relations

•Properties of the TPE amplitudes with respect to the dapnia transformation: $\cos \theta = -\cos \theta$ i.e., $\theta \rightarrow \pi - \theta$

(equivalent to non-linearity in Rosenbluth fit)

$$\begin{split} \Delta G_{E,M}(q^2,-\cos\theta) &= -\Delta G_{E,M}(q^2,\cos\theta),\\ F_3(q^2,-\cos\theta) &= F_3(q^2,\cos\theta) \end{split}$$

•Based on these properties one can remove or single out TPE contribution

saclay

Symmetry relations

•Differential cross section at complementary angles:

dapnia

saclay

The SUM cancels the 2γ contribution:

$$\frac{d\sigma_+}{d\Omega}(\theta) = \frac{d\sigma}{d\Omega}(\theta) + \frac{d\sigma}{d\Omega}(\pi - \theta) = 2\frac{d\sigma^{Born}}{d\Omega}(\theta)$$

The DIFFERENCE enhances the 2γ contribution:

$$\frac{d\sigma_{-}}{d\Omega}(\theta) = \frac{d\sigma}{d\Omega}(\theta) - \frac{d\sigma}{d\Omega}(\pi - \theta) = 4N \left[(1 + x^2) ReG_M \Delta G_M^* + \frac{1 - x^2}{\tau} ReG_E \Delta G_E^* + \sqrt{\tau(\tau - 1)} x (1 - x^2) Re(\frac{1}{\tau} G_E - G_M) F_3^* \right]$$

$$\tau = \frac{q^2}{4m^2}, \quad x = \cos\theta$$

Radiative Return (ISR)

$$\frac{d\sigma(e^+e^- \to p\,\bar{p}\,\gamma)}{dm\,d\cos\theta} = \frac{2m}{s}W(s,x,\theta)\sigma(e^+e^- \to p\,\bar{p})(m), \quad x = \frac{2E_{\gamma}}{\sqrt{s}} = 1 - \frac{m^2}{s},$$
$$W(s,x,\theta) = \frac{\alpha}{\pi x} \left(\frac{2-2x+x^2}{\sin^2\theta} - \frac{x^2}{2}\right), \quad \theta >> \frac{m_e}{\sqrt{s}}.$$

Structure Function method

Angular distribution

Radiative Corrections to the data

- dapnia
- RC can reach 40% on σ
 - Declared error $\sim 1\%$
- Same correction for G_E and G_M
- saclay Have a large ε-dependence
 - Affect the slope

$$\sigma_{el} = \sigma_{meas} \cdot RC$$

$$\sigma_{meas}^{red}(Q^2, \epsilon) = \sigma^{red}(Q^2, \epsilon)[1 - \delta_R(Q^2, \epsilon)] = G_M^2(Q^2) \left(\tau(Q^2) + \epsilon \frac{G_E^2(Q^2)}{G_M^2(Q^2)}\right) [1 - \epsilon \delta'(Q^2)]$$

$$= G_M^2(Q^2) \left[\tau + \epsilon \left(\frac{G_E^2(Q^2)}{G_M^2(Q^2)} - \tau \delta'(Q^2)\right)\right]$$

$$\uparrow$$
Slope negative if : $\delta' \ge \frac{G_E^2}{\tau C^2}$

$$slope$$

 τG_M^*

*The slope is negative starting from 2-3 GeV*²

Rosenbluth separation

Contribution of the electric term

The proton magnetic form factor

E. Brash et al. Phys. Rev. C65, 051001 (2002)

Reduced cross section and RC

Data from L. Andivahis et al., Phys. Rev. D50, 5491 (1994)

Experimental correlation

Scattered electron energy

All orders of PT needed \rightarrow

beyond Mo & Tsai approximation

Structure Function method

E. A. Kuraev and V.S. Fadin, Sov. J. of Nucl. Phys. 41, 466 (1985)

dapnia

œ

saclay

•SF method applied to QED processes: calculation of radiative corrections with precision of 0.1%.

•Takes into account the dynamics of the process

Formulated in terms of parton densities (leptons, antileptons, photons)
 Many applications to different processes

$$\frac{d\mathcal{O}'(y) = \int \frac{dx}{x} g_{x}}{\int \frac{d\mathcal{O}_{o}(Ex)}{\left[1 - \Pi(Q^{2}x)\right]^{2}}} \mathcal{D}(x,L) \mathcal{D}(\frac{yg_{x}}{x},L) \left(1 + \frac{d}{n}\mathcal{K}\right)$$

Electron SF: probability to 'find' electron in the initial electron, with energy fraction x and virtuality up to Q^2

Unpolarized Cross section

Polarization ratio

Correction (SF method)

•Explicit calculation for structureless proton

- The contribution is small, for unpolarized and polarized ep scattering
- Does not contain the enhancement factor L
- The relevant contribution to K is ~ 1

E.A.Kuraev, V. Bytev, Yu. Bystricky, E.T-G Phys. Rev. D74 013003 (1076)

QED versus QCD

Perspectives and Conclusions

•<u>Fundamental measurement</u>: the electric and the magnetic distributions of the proton are different in SL region.

- What about TL ? Separation of G_E and G_M via angular saclay dependence of differential cross section
 - Clarify reaction mechanism: 2γ exchange by model independent symmetry requirements
 - Unified description in TL and SL region : *zero of GEp*?
 - Asymptotic properties : *QCD and analyticity*

Model independent properties Lessons from QED

Nucleon form factor ratio

dapnia

•The ratio of the FFs moduli is given by the following expression:

$$\frac{d\sigma_+}{d\Omega}(\theta_1) : \frac{d\sigma_+}{d\Omega}(\theta_2) = \frac{\tau(1+x_1^2) + (1-x_1^2)R^2}{\tau(1+x_2^2) + (1-x_2^2)R^2}$$

$$x_i = cos\theta_i, \quad R = \frac{|G_E|}{|G_M|}$$

Model independent considerations for $\ ar{p} + p ightarrow e^+ + e^-$ M. L. Goldberger, Y. Nambu and R. Oehme, Ann. Phys 2, 226 (1957) P. Guichon and M. Vanderhaeghen, P. R.L. 91, 142303 (2003) dapnia M.P. Rekalo and E. Tomasi-Gustafsson, EPJA 22, 331 (2004) The hadronic current: $J_{\mu} = \bar{u}(-p_2)[\tilde{G}_M(q^2, t)\gamma_{\mu} + \frac{P_{\mu}}{m}\tilde{F}_2(q^2, t) + \frac{P_{\mu}}{m^2}\hat{K}F_3(q^2, t)]u(p_1)$ saclay $K = \frac{k_1 + k_2}{2}, \ \mathcal{P} = \frac{p_1 + p_2}{2},$ Decomposition of the amplitudes: $G_M(q^2,t) = G_M(q^2) + \Delta G_M(q^2,t),$ $\tilde{G}_E(q^2, t) = G_E(q^2) + \Delta G_E(q^2, t).$ For 1γ -exchange: $\tilde{G}_{M}^{Born}(q^{2},t) = G_{M}(q^{2}), \ \tilde{F}_{2}^{Born}(q^{2},t) = F_{2}(q^{2}), \ F_{3}^{Born}(q^{2},t) = 0$

The work presented here was initiated in a collaboration with Prof. M. P. REKALO

Qualitative estimation of Two-Photon exchange (for ed)

Form factors \rightarrow quark counting rules: $F_d \sim t^5$ and $F_N \sim t^2$

$$\frac{\mathcal{M}_2}{\mathcal{M}_1} = \alpha F_N^2 / F_d(t) = 256 \ \alpha t / m_x^2$$

For $t = 4 \ \text{GeV}^2$, $t / m_x^2 \simeq 6$ $\frac{\mathcal{M}_2}{\mathcal{M}_1} \simeq 1500 \ \alpha \to 10!$
For d , ³He, ⁴He, 2 γ effect should appear at ~1 GeV²,
for protons ~ 10 GeV²