Rest Gas attenuation measurements

@SpinLab - Ferrara

Luca Barion

Istituto Nazionale di Fisica Nucleare sezione di Ferrara and Università di Ferrara via Saragat 1 - 44100 Ferrara (FE) Italy

$$\sigma_{eff} = \iiint f_b(v_b) \otimes f(v_g) \otimes \sigma(|\vec{v_b} - \vec{v_g}|) \otimes \sqrt{1 + \frac{V_g^2}{V_b^2}} \cdot dv_b dv_g$$

Calculated cross sectionsLegend
$$\sigma_{eff1}$$

 $v_b \rightarrow \delta$
 $v_g \rightarrow maxwellian$
 $\sigma \rightarrow constant (\sigma_{hs})$ $\sigma_{eff2} = \frac{2 \cdot i_1 \cdot \sigma_{hs}}{\sqrt{\pi} \cdot V_b^2 \cdot v_{mp}}$
 $i_1 = \int_a^a f_1(g) \cdot dg$ $V_b = Beam Velocity$
 $V_g = Drift Velocity $V_{g} = Nost Probable Velocity(Maxwell - Boltzmann)$
 $V_g = Rest Gas Velocity $\sigma_{hs} = Hard Sphere Cross section$
 $T_b = Beam Temperature $g = V_b \cdot \nabla_g$
 $uma = Atomic Mass Unit (1.6605 \cdot 10^{-27} Kg)$
 $K_b = Boltzmann Constant (1.3806 \cdot 10^{-23} m^2 kg s^{-2} K^{-1})$ σ_{eff2}
 $v_b \rightarrow mod.maxwellian $v_g \rightarrow constant (\sigma_{hs})$ $\sigma_{eff2} = \frac{i_2}{i_{1b}}$
 $f_2(v) \cdot \sigma_{eff1}(v) \cdot dv$
 $i_2 = \int_a^b f_2(v) \cdot \sigma_{eff1}(v) \cdot dv$ σ_{eff3}
 $v_g \rightarrow delta$
 $v_g \rightarrow delta$
 $\sigma_g \rightarrow constant (\sigma_{hs})$ $\sigma_{eff3} = \sigma_{hs} \cdot \sqrt{1 + \frac{V_g^2}{V_b^2}} \cdot V_g = V_{mp}$$$$$

RestGas attenuation measurements

Calculated cross sections

$$\sigma_{eff4}$$

 $v_b \rightarrow mod.maxellian$
 $v_g \rightarrow delta$
 $\sigma_g \rightarrow constant(\sigma_{hs})$

$$\sigma_{eff4} = \sigma_{hs} \cdot \frac{i_4}{i_{4b}}$$

$$f_2(v) = v^2 \cdot e^{-\beta(v-V_d)^2} , \quad \beta = \frac{uma}{K_b \cdot T_b}$$

$$i_4 = \int_a^b f_2(v) \cdot \sqrt{1 + \frac{V_g^2}{v^2}} \cdot dv , \quad i_{4b} = \int_a^b f_2(v) \cdot dv$$

Legend

 $V_{b} = Beam Velocity$ $V_{d} = Drift Velocity$ $V_{mp} = Most Probable Velocity (Maxwell - Boltzmann)$ $V_{g} = Rest Gas Velocity$ $\sigma_{hs} = Hard Sphere Cross section$ $T_{b} = Beam Temperature$ $g = |\vec{v_{b}} - \vec{v_{g}}|$ $uma = Atomic Mass Unit (1.6605 \cdot 10^{-27} Kg)$ $K_{b} = Boltzmann Constant (1.3806 \cdot 10^{-23} m^{2} kg s^{-2} K^{-1})$

$$\sigma_{eff5}$$

$$v_{b} \rightarrow mod.maxwellian$$

$$v_{g} \rightarrow maxwellian$$

$$\sigma_{g} \rightarrow \pi a^{2} \left(\frac{b}{g}\right)^{c}$$

$$\sigma_{eff5} = \frac{I_{5b}}{I_{2b}}$$

$$i_{5} = \int_{a}^{b} f_{1}(g)$$

$$i_{5b} = \int_{a}^{b} f_{2}(v)$$

$$\sigma_{eff5} = \frac{i_{5b}}{i_{2b}}$$

$$i_5 = \int_a^b f_1(g) \cdot \pi \cdot (\mathbf{a} \cdot 10^{-10} \, m)^2 \cdot \left(\frac{\mathbf{b} \, m/s}{g}\right)^c dg$$

$$i_{5b} = \int_a^b f_2(v) \cdot \frac{2i_5}{\sqrt{\pi} \cdot v^2} \cdot V_{mp} dv$$

ABS1 layout

Measure Quadrupole Mass Analyzer (QMA) atomic/molecular signals(S₁,S₂) for different pressures in chamber 2 (HV2)

Plot and fit data: measured slope represents the effective cross section σ_{eff}

Experimenta

Repeat for different nozzle temperatures and plot result (σ_{eff} vs T_{noz})

Calculate attenuation losses under different assumptions, at different T_{noz}

Experimental conditions

Discharge off		Discharge on	
Collar heater	-110 °C	Collar heater	-110 °C
H ₂ dissociator flow	125 sccm (50% of 250 sccm)	H ₂ dissociator flow	125 sccm (50% of 250 sccm)
O ₂ dissociator flow	0 sccm (0% of 5 sccm)	O ₂ dissociator flow	2.5 sccm (50% of 5 sccm)
Microwave power	0 W	Microwave power	600 W

Sample 1	Nozzle 2 mm, molecular beam, discharge off
Sample 2	Nozzle 2 mm, molecular beam, discharge on
Sample 3	Nozzle 2 mm, atomic beam, discharge on
Sample 4	Nozzle 4 mm, molecular beam, discharge off

Experimental data analysis

RestGas attenuation measurements

Sample 1

noz

55 uK

From attenuation measurements to $\sigma_{_{eff}}$

Sample 1

Comparison between experimental data and calculations

RestGas attenuation measurements

Beam attenuation by rest gas in Chamber 2

Beam attenuation by pressure in Chamber 2

Nozzle tempera	Survival fraction		
ture [uK]	Atomic	Molecular	
44	60%	55%	
50	61%	57%	
60	62%	58%	
85	63%	60%	
90	63%	59%	
100	64%	60%	
130	67%	62%	
190	68%	63%	
250	70%	66%	
290	71%	65%	

Sample 2 + 3

