Baryon form factors from initial state radiation processes and some phenomenological considerations

Simone Pacetti

Nucleon Structure at FAilR
IUSS, Ferrara, 15-16 October, 2007

Outline

- Initial State Radiation main features
- BABER $\sigma\left(e^{+} \boldsymbol{e}^{-} \rightarrow p \bar{p} \gamma\right)$ and Coulomb correction
- BABAR $\sigma\left(e^{+} \boldsymbol{e}^{-} \rightarrow \Lambda \bar{\Lambda} \gamma\right)$

Space and time $G_{E}^{p} / \mathcal{G}_{M}^{p}$ via dispersion relations

- "Baryonium" and dips in $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow$ hadronic channels?
- G_{M}^{p} asymptotic behavior from a dispersive sum rule

Official results approved by the BABAR Collaboration

rambo

Phenomenological analysis by R. Baldini, C. Bini, P. Gauzzi, M. Mirazita, M. Negrini and S.P.

BaBaR: Initial State Radiation

ISR main features

ISR studies at the $\Upsilon(4 S)$ mass can yield the same observables as the low energy $e^{+} e^{-}$experiments

- Precise measurements on $e^{+} e^{-}$cross sections at low CM energy
- Hadron spectroscopy for $1<\sqrt{s}<5 \mathrm{GeV}$
- Form factors
- Discovery of new states [e.g. $Y(4260)$]

$$
e^{+} e^{-} \rightarrow \gamma X_{\text {had }}
$$

Born cross section

$$
\frac{d^{2} \sigma\left(e^{+} e^{-} \rightarrow \gamma X_{\text {had }}\right)}{d x d \theta_{\gamma}}=W\left(x, \theta_{\gamma}\right) \sigma_{e^{+} e^{-} \rightarrow x_{\text {had }}}(s) \quad x=\frac{2 E_{\gamma}}{E_{\mathrm{CM}}} \quad s=q^{2}=E_{\mathrm{CM}}^{2}(1-x)
$$

Advantages

All q at the same time \Longrightarrow Better control on systematics (e.g. greatly reduced point to point) CM boost \Longrightarrow at threshold $\epsilon \neq 0+\sigma_{W} \sim 1 \mathrm{MeV}$

$$
\text { Detected ISR } \gamma \Longrightarrow \text { full } X_{\text {had }} \text { angular coverage }
$$

Drawbacks

$\mathcal{L} \propto \Delta s$ bin width

- More backgrounds

BaBas $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p} \gamma\right)$

- Analyzed $232 \mathrm{fb}^{-1}$
- $p \bar{p} \gamma$ kinematic fit
- 4025 selected events
- $\epsilon \sim 18 \pm 1 \%$
- $\sim 6 \%$ background mainly due to non ISR $e^{+} e^{-} \rightarrow p \bar{p} \pi^{0}$

BABAR cross section from threshold to 4.5 GeV [PRD73 (2006) 012005]

Baryon Form Factors and cross sections

Baryon current operator (Dirac \& Pauli)
$\Gamma^{\mu}(q)=\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i}{2 M_{B}} \sigma^{\mu \nu} q_{\nu} F_{2}\left(q^{2}\right)$
Electric and Magnetic Form Factors

$$
\begin{aligned}
& G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\tau F_{2}\left(q^{2}\right) \\
& G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
\end{aligned} \quad \tau=\frac{q^{2}}{4 M_{B}^{2}}
$$

Elastic scattering

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} E_{e}^{\prime} \cos ^{2} \frac{\theta}{2}}{4 E_{e}^{3} \sin ^{4} \frac{\theta}{2}}\left[G_{E}^{2}-\tau\left(1+2(1-\tau) \tan ^{2} \frac{\theta}{2}\right) G_{M}^{2}\right] \frac{1}{1-\tau}
$$

Annihilation

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta C}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right]
$$

Coulomb correction for charged $B: C \approx \frac{y}{1-e^{-y}} \quad y=\frac{\pi \alpha}{\beta}$

Pheno: Coulomb correction in pp at threshold

Coulomb correction at threshold

$$
C=\frac{\frac{\pi \alpha}{\beta}}{1-\exp \left(-\frac{\pi \alpha}{\beta}\right)} \xrightarrow[\beta \rightarrow 0]{ } \frac{\pi \alpha}{\beta}
$$

This factor compensates for phase space and gives a constant value at threshold

$$
\lim _{\text {threshold }} \sigma(s)=\frac{4 \pi^{2} \alpha^{3}}{3 \cdot 4 M_{p}^{2}} \frac{3}{2}\left|G^{p}\left(4 M_{p}^{2}\right)\right|^{2} \approx 0.8 n b\left|G^{p}\left(4 M_{p}^{2}\right)\right|^{2}
$$

BaBAR\& History of $\left|G_{M}^{P}\right|$ measurements

- ${ }^{\prime} 05$ BABAR $e^{+} e^{-} p \bar{p}$ with ISR
$\square \diamond$ '73, '94 ADONE, FENICE
- '77 ELPAR ($p \bar{p}$ at rest)
$\nabla \bigcirc$
'79, '83, '90 DM1, DM2
\triangle '94 PS170
($p \bar{p}$ at rest, p stopped in liquid H)
- $\boldsymbol{\nabla}$ ○ '93, '99, '03 E760, E835 ($p \bar{p}$ at rest) $\dot{\star} \star$ '05 CLEO, BES

All these data have been obtained assuming $\left|G_{M}^{p}\right|=\left|G_{E}^{p}\right| \equiv\left|G^{p}\right|$

$$
\left|G^{p}\right|^{2}=\frac{\sigma_{p \bar{p}}\left(q^{2}\right)}{\frac{16 \pi \alpha^{2} C}{3} \frac{\sqrt{1-1 / \tau}}{4 q^{2}}(1+1 / 2 \tau)}
$$

BAZARs $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p} \gamma\right)$ angular distribution

$\cos \theta_{p}$ distributions form threshold up to 3 GeV [intervals in $\left.E_{C M} \equiv q(\mathrm{GeV})\right]$

$$
\frac{d \sigma}{d \cos \theta_{p}}=A\left[H_{E}\left(\cos \theta_{p}, q^{2}\right)\left|\frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}\right|^{2}+H_{M}\left(\cos \theta_{p}, q^{2}\right)\right]
$$

H_{E} and H_{M} from MC

Histograms show contributions from

- G_{E}

- G_{M}

At low q

$$
\sin ^{2} \theta_{p}>1+\cos ^{2} \theta_{p}
$$

First observation!

$$
\left|G_{E}^{p}\right|>\left|G_{M}^{p}\right|
$$

BaBaRః Time-like $\left|G_{E}^{p} / G_{M}^{p}\right|$ measurements

$$
\frac{d \sigma}{d \cos \theta}=\frac{\pi \alpha^{2} \beta C}{2 q^{2}}\left|G_{M}^{p}\right|^{2}\left[\left(1+\cos ^{2} \theta\right)+\frac{4 M_{p}^{2}}{q^{2} \mu_{p}^{2}} \sin ^{2} \theta|R|^{2}\right]
$$

$$
R\left(q^{2}\right)=\mu_{\rho} \frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}
$$

BaBars $\sigma\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \Lambda \bar{\Lambda} \gamma\right)$

[V. Druzhinin LP 2007]

$\Lambda \bar{\pi} \gamma$ channel

- Analyzed: $230 \mathrm{fb}^{-1}$
- Signal: 204 ± 19
- Background: 15 ± 3

Angular distributions

Pheno; Coulomb correction in $\Lambda \bar{\Lambda}$ at threshold?

Extended charge density

$$
\rho(\vec{r})=\frac{1}{(2 \pi)^{3}} \int G_{E}^{\hat{1}}\left(q^{2}\right) e^{i \vec{q} \cdot \vec{r}} d^{3} \vec{q}
$$

The screened α^{\prime} is $\left(R \sim R_{\Lambda}\right)$

$$
\frac{\alpha^{\prime}}{\boldsymbol{R}}=\alpha \int \frac{\rho\left(\vec{r}^{\prime}\right) \rho_{R}\left(\vec{r}^{\prime \prime}\right)}{\left|\vec{r}^{\prime}-\vec{r}^{\prime \prime}\right|} d^{3} \vec{r}^{\prime} d^{3} \vec{r}^{\prime \prime}
$$

Other threshold effects

QCD Coulomb-like correction $\alpha \rightarrow C_{F} \alpha_{S}$
$\boldsymbol{\Lambda} \bar{\Lambda}$ production through $\boldsymbol{p} \overline{\boldsymbol{p}}$ rescattering

$$
\begin{gathered}
\begin{array}{c}
\text { Threshold correction } \\
\text { for } \Lambda \bar{\lambda} \text { channel }
\end{array} \\
\Downarrow \\
\hline \begin{array}{c}
\text { Non-zero value for } \\
\tau=1
\end{array} \\
\hline \begin{array}{c}
\text { Data show no } \\
\text { plateau (see } p \bar{p})
\end{array} \\
\hline
\end{gathered}
$$

Ratio $\left|G_{E}^{\Lambda} / G_{M}^{\hat{M}}\right|$

$\left|G_{M}^{A}\right|$ and $\left|G_{M}^{n}\right|$ comparison through U-spin

Additional corrections are needed to account for the SU(3) flavor symmetry breaking

Analyticity constraints on the baryon form factors

q^{2}-complex plane

Perturbative QCD constrains the asymptotic behaviour

$$
F_{i}\left(q^{2}\right) \propto\left(-q^{2}\right)^{-(i+1)} \Rightarrow G_{E, M} \propto\left(-q^{2}\right)^{-2}
$$

$$
\begin{array}{ll}
\text { pQCD: } q^{2} \rightarrow-\infty & F_{i}\left(q^{2}\right) \propto\left(-q^{2}\right)^{-(i+1)} \Rightarrow \\
\text { Analyticity: } q^{2} \rightarrow \pm \infty & G_{E, M}(-\infty)=G_{E, M}(+\infty)
\end{array}
$$

Space-like R measurements

Space-like data

$\gamma \gamma$ exchange

Space-like R measurements

Space-like data

$\gamma \gamma$ exchange

Asymmetry in angular distributions

Egle, previuos talk [arXiv:0710.0454]

$R\left(q^{2}\right)$ in the complex plane

$R\left(q^{2}\right)$ in the complex plane

Dispersion relation for R with subtraction at $q^{2}=0$
experimental sheet

Using a Dispersion Relation (DR) formalism,

 we fit data in the time- and space-like regions and extrapolate into the whole \boldsymbol{q}^{2}-complex planeReconstructed R in space and time regions

Using a Dispersion Relation (DR) formalism,

 we fit data in the time- and space-like regions and extrapolate into the whole \boldsymbol{q}^{2}-complex planeReconstructed R in space and time regions

Pheno: Asymptotic $G_{E}^{P}\left(q^{2}\right) / G_{M}^{p}\left(q^{2}\right)$ and phase

Asymptotic behaviour of $G_{E}^{P}\left(q^{2}\right) / G_{M}^{p}\left(q^{2}\right)$

pQCD prediction

$$
\left|\frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}\right| \underset{\left|q^{2}\right| \rightarrow \infty}{\longrightarrow 1}
$$

Pheno; Asymptotic $G_{E}^{P}\left(q^{2}\right) / G_{M}^{P}\left(q^{2}\right)$ and phase

Asymptotic behaviour of $G_{E}^{P}\left(q^{2}\right) / G_{M}^{p}\left(q^{2}\right)$

pQCD prediction

$$
\left|\frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}\right| \underset{\left|q^{2}\right| \rightarrow \infty}{\longrightarrow 1}
$$

Pheno: $\left|G_{E}^{p}\left(q^{2}\right)\right|$ and $\left|G_{M}^{p}\left(q^{2}\right)\right|$ from $\sigma_{p p}$ and DR

$\operatorname{BABAR} \sigma\left(e^{+} e^{-} \rightarrow p \bar{p} \gamma\right)+\mathbf{D R}$

G_{M}^{p} very steep at threshold \Longrightarrow vector "Baryonium"?

Steep rising behaviours in other pp spectra

> Similar results found by Belle PRL88 181803, PRL89 151802

BES in $J / \Psi \rightarrow p \bar{p} \gamma$
 Opposite C parity in the $p \bar{p}$ channel

Sub-threshold resonance

$$
\begin{aligned}
& \text { Preferred } J^{P}=0^{ \pm}, C=+ \\
& M \approx 1860 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma<30 \mathrm{MeV}
\end{aligned}
$$

Dips in multihadronic reactions

Diffractive photoproduction

The parameters depend on the model used for the background

Dispersion relations and sum rules

Geshkenbeĭn, loffe, Shifman '74

DR's connect space and time values of a form factor $G\left(q^{2}\right)$

$$
\left.G\left(q^{2}\right)=\frac{1}{\pi} \int_{s_{\mathrm{th}}}^{\infty} \frac{\operatorname{lm} G(s) d s}{s-q^{2}} \quad e p \rightarrow e p \right\rvert\, \quad s_{s_{\mathrm{th}}}^{\text {no data }} \underbrace{e^{+} e^{-} \leftrightarrow p \bar{p}}_{s_{\mathrm{phy}}} \longrightarrow \mathrm{Req}^{2}
$$

The imaginary part is not experimentally accessible
There are no data in the unhysical region [$s_{\text {th }}, s_{\text {phy }}$]
We need to know the asymptotic behavior

They applied the DR for the imaginary part to the function

$$
\phi(z)=f(z) \frac{\ln G(z)}{z \sqrt{s_{\mathrm{th}}-z}} \quad \text { with } \quad \int_{0}^{s_{\mathrm{phy}}} f^{2}(z) d z \ll 1
$$

The DR integral contains the modulus $|G(s)|$

The unhysical region contribution is suppressed

Attenuation of the unphysical region

Strategy

Use the function $\phi(z)=f(z) \frac{\ln G(z)}{z \sqrt{s_{\mathrm{th}}-z}}$

- $f(z)$, is analytic with the cut $(-\infty, 0)$
- $f(z)=f_{L}(w)=\sum_{l=0}^{L} \frac{2 /+1}{(L+1)^{2}} P_{l}(1-2 w), w=\frac{\sqrt{s_{\text {phy }}}-\sqrt{z}}{\sqrt{s_{\text {phy }}}+\sqrt{z}}$

This function, with $f_{L}(0)=1$, minimizes:

$$
\int_{0}^{1} f_{L}^{2}(w) d w
$$

and suppresses the contribution in the unphysical region

Attenuated DR and sum rule

New DR with variable suppressed region [$0, s_{\text {phy }}$] [$G\left(q^{2}\right)$ has no zeros]

$$
\oint_{C} \phi(z) d z=0
$$

$$
\underbrace{-\int_{-\infty}^{0} \frac{\operatorname{lm}[f(t)] \ln G(t)}{t \sqrt{s_{\mathrm{th}}-t}} d t}_{\text {Space-like }}=\underbrace{\int_{s_{\mathrm{th}}}^{\infty} \frac{f(s) \ln |G(s)|}{s \sqrt{s-s_{\mathrm{th}}}} d s}_{\text {Time-like }}
$$

Convergence relation to test asymptotic power behaviour of G_{M}^{p}

$$
\underbrace{-\int_{-\infty}^{0} \frac{\operatorname{lm}[f(t)] \ln G(t)}{t \sqrt{s_{\mathrm{th}}-t}} d t}_{\text {Space-like data }+(-t)^{-n}}=\int_{s_{\mathrm{th}}}^{\infty} \frac{f(s) \ln |G(s)|}{s \sqrt{s-s_{\mathrm{th}}}} d s \approx \underbrace{\int_{s_{\mathrm{phy}}}^{\infty} \frac{f(s) \ln |G(s)|}{s \sqrt{s-s_{\mathrm{th}}}} d s}_{\text {Time-like data }+s^{-n}}
$$

n is the free parameter

Pheno: Sum rule: result

$$
G_{M}^{p}\left(q^{2}\right) \underset{\left|q^{2}\right| \rightarrow \infty}{\propto}\left(q^{2}\right)^{-(2.27 \pm 0.36)}
$$

Pheno: Sum rule: result

$$
G_{M}^{p}\left(q^{2}\right) \underset{\left|q^{2}\right| \rightarrow \infty}{\propto}\left(q^{2}\right)^{-(2.27 \pm 0.36)}
$$

Conclusions

BABAR:

- Structured $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p} \gamma\right)$ (Best measurement ever done!)
- $\sigma\left(e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda} \gamma\right) \approx 0.2 \mathrm{nb}$ at threshold
- $\left|G_{E}^{p}\right|>\left|G_{M}^{p}\right|$ and $\left|G_{E}^{\Lambda}\right| \gtrsim\left|G_{M}^{\Lambda}\right|$ above threshold

Fromos

- Coulomb correction $\Rightarrow \sigma_{B \bar{B}}>0$ at threshold
- Space and time $\left|G_{E}^{p} / G_{M}^{p}\right|$ via DR
- asymptotic behaviour and space-like zero
- results on G_{E}^{p} and G_{M}^{p}
- "Baryonium" and dips in $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow$ hadronic channels ?
- Space and time data on G_{M}^{p} connected via analyticity confirm the pQCD asymptotic behavior $G_{M}^{p} \propto\left(q^{2}\right)^{-2}$

BACK-UP SLIDES

$\gamma \gamma$ exchange from $e^{+} e^{-} \rightarrow p \bar{p} \gamma$ BABAR data

$$
\mathcal{A}\left(\cos \theta, M_{p \bar{p}}\right)=\frac{\frac{d \sigma}{d \Omega}\left(\cos \theta, M_{p \bar{p}}\right)-\frac{d \sigma}{d \Omega}\left(-\cos \theta, M_{p \bar{p}}\right)}{\frac{d \sigma}{d \Omega}\left(\cos \theta, M_{p \bar{p}}\right)+\frac{d \sigma}{d \Omega}\left(-\cos \theta, M_{p \bar{p}}\right)}
$$

Dispersion relations connecting time and space regions

$\boldsymbol{G}_{E}\left(\boldsymbol{q}^{2}\right), \boldsymbol{G}_{M}\left(\boldsymbol{q}^{2}\right)$ and also $\boldsymbol{R}\left(\boldsymbol{q}^{2}\right)$, if \boldsymbol{G}_{M} has no zeros, are analytic on the \boldsymbol{q}^{2} plane with a cut $\left[\mathcal{S}_{\mathrm{h}}=4 M_{\pi}^{2}, \infty[\right.$

Dispersion relation for the imaginary part ($q^{2} \leq s_{\text {th }}$)

$$
G\left(q^{2}\right)=\lim _{\mathcal{R} \rightarrow \infty} \frac{1}{2 \pi i} \oint_{C} \frac{G(z) d z}{z-q^{2}}=\frac{1}{\pi} \int_{s_{\text {th }}}^{\infty} \frac{\operatorname{lm} G(s) d s}{s-q^{2}}
$$

Subtraction at $q^{2}=0$ because of a non-vanishing asymptotic limit of the ratio

$$
\text { For } q^{2} \leq s_{\text {th }} R \text { is real }
$$

For $q^{2}>s_{\text {th }} R$ is complex

$$
R\left(q^{2}\right)=R(0)+\frac{q^{2}}{\pi} \int_{s_{\mathrm{th}}}^{\infty} \frac{\operatorname{Im} R(s) d s}{s\left(s-q^{2}\right)}
$$

$$
\operatorname{Re} R\left(q^{2}\right)=R(0)+\frac{q^{2}}{\pi} \operatorname{Pr} \int_{s_{\mathrm{th}}}^{\infty} \frac{\operatorname{Im} R(s) d s}{s\left(s-q^{2}\right)}
$$

Polarization formulae in the time-like region

The ratio $R\left(q^{2}\right)$ is complex for $q^{2} \geq s_{\text {th }}$

$$
R\left(q^{2}\right)=\mu_{p} \frac{G_{E}^{p}\left(q^{2}\right)}{G_{M}^{p}\left(q^{2}\right)}=\left|R\left(q^{2}\right)\right| e^{i \rho\left(q^{2}\right)}
$$

The polarization depends on the phase ρ

Polarization components and single spin asymmetry

$$
\begin{aligned}
& \mathcal{P}_{y}=-\frac{\sin (2 \theta)|R| \sin (\rho)}{\mu_{p} D \sqrt{\tau}}=\left\{\begin{array}{c}
\text { Does not depend on } P_{e} \\
\text { in } p^{\uparrow} \bar{p} \rightarrow \boldsymbol{e}^{+} e^{-}
\end{array}\right\}=\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}} \equiv \mathcal{A}_{y} \\
& \mathcal{P}_{x}=-P_{e} \frac{2 \sin (2 \theta)|R| \cos (\rho)}{\mu_{p} D \sqrt{\tau}} \\
& \mathcal{P}_{z}=P_{e} \frac{2 \cos (\theta)}{D}=\{\text { Does not depend on the phase } \rho
\end{aligned}
$$

$$
D=1+\cos ^{2} \theta+\frac{1}{\tau \mu_{p}^{2}}|R|^{2} \sin ^{2} \theta \quad \tau=\frac{q^{2}}{4 M_{N}^{2}} \quad P_{e}=\text { electron polarization }
$$

Pheno: Parameterization and constraints

The imaginary part of R is parameterized by two series of orthogonal polynomials $T_{i}(x)$

$$
\operatorname{Im} R\left(q^{2}\right) \equiv I\left(q^{2}\right)=\left\{\begin{array}{lll}
\sum_{i} C_{i} T_{i}(x) & x=\frac{2 q^{2}-s_{\mathrm{phy}}-s_{\mathrm{th}}}{s_{\mathrm{phy}}-s-0} & s_{\mathrm{th}} \leq q^{2} \leq s_{\mathrm{phy}} \\
\sum_{j} D_{j} T_{j}\left(x^{\prime}\right) & x_{\mathrm{th}}=4 M_{\pi}^{2}=\frac{2 s_{\mathrm{phy}}}{q^{2}}-1 & q^{2}>s_{\mathrm{phy}}
\end{array}\right.
$$

Theoretical conditions on $\operatorname{ImR}\left(q^{2}\right)$

- $R\left(4 M_{\pi}^{2}\right)$ is real $\Longrightarrow I\left(4 M_{\pi}^{2}\right)=0$
- $R\left(4 M_{N}^{2}\right)$ is real $\Longrightarrow I\left(4 M_{N}^{2}\right)=0$
$\cap R(\infty)$ is real $\Longrightarrow I(\infty)=0$

Theoretical conditions on $\boldsymbol{R}\left(\boldsymbol{q}^{2}\right)$

- Continuity at $q^{2}=4 M_{\pi}^{2}$
- $R\left(4 M_{N}^{2}\right)$ is real and $\operatorname{Re} R\left(4 M_{N}^{2}\right)=\mu_{p}$

Experimental conditions on $\boldsymbol{R}\left(\boldsymbol{q}^{2}\right)$ and $\left|\boldsymbol{R}\left(\boldsymbol{q}^{2}\right)\right|$

Space-like region $\left(q^{2}<0\right)$ data for R from TJNAF and MIT-Bates

- Time-like region $\left(q^{2} \geq 4 M_{N}^{2}\right)$ data for $|R|$ from FENICE+DM2, BABAR, E835 and LEAR

Pheno: Phases from DR: $\left|F_{1}^{p}\left(q^{2}\right)\right|$ and $\left|F_{2}^{p}\left(q^{2}\right)\right|$

PANDA Workshop, Orsay ’07

BABAR $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)+\mathbf{D R}$

PANDA Workshop, Orsay ’07

BABAR $\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)+\mathbf{D R}$

Time-like $\left|G_{M}^{n}\right|$ measurements

Only two measurements by FENICE and DM2

Threshold behaviour

from angular distribution

$$
G_{M}^{n}\left(4 M_{n}^{2}\right)=G_{E}^{n}\left(4 M_{n}^{2}\right)=0 ?
$$

BABAR does agree with FENICE

Large $G_{M}^{\Lambda} \xrightarrow{\mathbf{U}-\text { spin }}$ large G_{M}^{n}

We start from the imaginary part of the ratio $\boldsymbol{R}\left(\boldsymbol{q}^{2}\right)$, written in the most general and model-independent way as

$$
I\left(q^{2}\right) \equiv \operatorname{Im}\left[R\left(q^{2}\right)\right]=\text { series of orthogonal polynomials }
$$

Some theoretical constraints can be applied directly on this function $I\left(q^{2}\right)$

Dispersion Relations

The function $R\left(q^{2}\right)$ is fully reconstructed in both time-like and space-like regions

The other theoretical conditions and the experimental constraints can be imposed on the obtained analytic expression of $\boldsymbol{R}\left(\boldsymbol{q}^{2}\right)$

Pheno: "Baryonium"

P.J. Franzini and F.J. Gilman, 1985

A vector meson $V_{0}\left(J^{P C}=1^{--}\right)$, with vanishing $e^{+} e^{-}$coupling, which decays through an intermediate broad vector meson V_{1}

$$
\begin{aligned}
& \mathcal{A} \propto \frac{1}{s-M_{1}^{2}}\left(1+a \frac{1}{s-M_{0}^{2}} a \frac{1}{s-M_{1}^{2}}+\cdots\right) \\
& \mathcal{A}=\frac{s-M_{0}^{2}}{\left(s-M_{1}^{2}\right)\left(s-M_{0}^{2}\right)-a^{2}}
\end{aligned}
$$

For instance. . .

Real asymptotic values for \boldsymbol{R}

$$
\begin{aligned}
\left|R_{\text {BABAR }}(\infty)\right| & =(1.0 \pm 0.2) \mu_{p} \\
\left|R_{\text {LEAR }}(\infty)\right| & =(2.2 \pm 0.6) \mu_{p}
\end{aligned}
$$

BABAR is in agreement with the scaling law $\left|G_{E}\left(q^{2}\right)\right| \simeq\left|G_{M}\left(q^{2}\right)\right|$ as $q^{2} \rightarrow \infty$

Asymptotic behaviour of F_{2} / F_{1}

$$
\lim _{q^{2} \rightarrow \infty} \frac{q^{2}}{4 M_{N}^{2}}\left|\frac{F_{2}}{F_{1}}\right|=\left|\frac{R(\infty)}{\mu_{p}}-1\right|= \begin{cases}2.0 \pm 0.2 & \text { BABAR } \\ 3.2 \pm 0.6 & \text { LEAR }\end{cases}
$$

$$
\left|\frac{F_{2}}{F_{1}}\right|_{q^{2} \rightarrow \infty}^{\propto} \frac{1}{q^{2}}
$$

Space-like zero

$$
\begin{aligned}
t_{0}^{B A B A R} & =(-10 \pm 1) G e V^{2} \\
t_{0}^{\mathrm{LEAR}} & =(-8.0 \pm 0.8) \mathrm{GeV}^{2}
\end{aligned}
$$

Phragmèn-Lindelöf theorem

$$
\rho\left(q^{2}\right) \underset{q^{2} \rightarrow \infty}{\longrightarrow} \pi
$$

BABARs ISR cross section and luminosity

ISR Cross section

$$
\sigma_{X_{\text {had }}}(s)=\frac{d N / d \sqrt{s}}{\epsilon\left(1+\delta_{\mathrm{rad}}\right)(d L / d \sqrt{s})}
$$

$$
\begin{aligned}
& \epsilon=\text { reconstruction efficiency } \\
& \delta_{\text {rad }}=\text { radiative corrections }
\end{aligned}
$$

ISRLuminosity

$$
\frac{d L}{d \sqrt{s}}=\frac{\alpha}{\pi x}\left[\left(2-2 x+x^{2}\right) \log \frac{1+C}{1-C}-x^{2} C\right] \frac{2 \sqrt{s}}{M_{\curlyvee(4 S)}^{2}} L_{e e}
$$

