PANDA Electromagnetic Working Group Meeting Ferrara, 15 – 16 October 2007

Marco Maggiora

Dipartimento di Fisica ``A. Avogadro" and INFN - Torino, Italy

Introduction

A complete description of nucleonic structure requires:

• quark and gluon distribution functions

quark fragmentation functions

(a) leading twist and (a) NLO (k_T dependence)

Phase space for Drell-Yan processes

Drell-Yan Asymmetries — $\bar{p}p \rightarrow \mu^+ \mu^- X$

 $\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}\left(1+\lambda\cos^2\theta+\mu\sin^2\theta\cos\varphi+\frac{\nu}{2}\sin^2\theta\cos2\varphi\right)$

NLO pQCD: $\lambda \sim 1$, $\mu \sim 0$, $\upsilon \sim 0$ (including resummation^[2]) Lam-Tung sum rule: $1 - \lambda = 2\nu$ Experimental data ^[1]: $\upsilon \sim 30$ % - Can be interpreted by ISI ^{II} J.S.Conway et al., Phys. Rev. D39 (1989) 92. ^{II} D. Boer et al., Phys. Rev. D74 (2006) 014004.

> υ involves transverse spin effects at leading twist ^[2] If unpolarised DY σ is kept differential on k_T , cos2φ contribution to angular distribution provide: $\hbar_1^{\iota}(x_{2,\kappa_{\iota}}^2) \approx \overline{h}_1^{\iota}(x_{1,\kappa_{\iota}}^{\iota})$

^[2] D. Boer et al., Phys. Rev. D60 (1999) 014012.

Unpolarised Drell-Yan Asymmetries

GeV/c² 40*K* € ++ 0.5 ++ ** 00, J/w +4 10 5 1.0 etry Counts/0.1 GeV/c² 10 Target quark/antiquark, x₂ tion 0.8 10 1×4.1× 10² 0.6 10 **'C** 1 $\tau = 0.4$ 0.4 2 0.2 < $\tau = 0.2$ 0.2 2 GeV/c error bars allo $\tau = 0.05$ • small asymn 0.8 1.0 0.6 0.2 0.4 • their depend Beam antiquark / quark, x 0.6 0.7 ^[1]A. Bianconi and M. Xp

 $\bar{p} p \rightarrow \mu^+ \mu^- X$

Drell-Yan Asymmetries — $\bar{p} p \rightarrow \mu^+ \mu^- X$

At higher energy ($s \sim 200 \text{ GeV}^2$) perturbative corrections^[1] are sensibly smaller in the safe region

^[1]H. Shimizu et al., Phys. Rev. D71 (2005) 114007

Unpolarised Drell-Yan — $\bar{p} p \rightarrow \mu^+ \mu^- X$

Unpolarised DY cross-section allow the investigation of:

- limits of the factorisation and perturbative approach
- relation of perturbative and not perturbative dynamics in hadron scattering
- ^[1]H. Shimizu et al., Phys. Rev. D71 (2005) 114007

Benchmark channel: DY @ 14 GeV/c — $\bar{p}p \rightarrow \mu^+ \mu^- X$

Barrel and endcap segmentation

Background: dipions with the dimuon kinematics

Barrel rejection power

Muons partners of those surviving the barrel

Background simulation with PYTHIA

Background and signal kinematics

In both cases statistics accumulates in the low IM region

Kinematical cuts are problematic due to statistics loss

Work in progress

- complete background studies simulation
- considering a revised geometry with an enlarged endcap (more Fe-equivalent)
- figuring out requirements in the dipole sector?

Spin physics @ PANDA?

 $\frac{\text{UNPOLARISED DY}}{\cos(2\phi) \text{ asymmetry}^{[1]}} \stackrel{2}{\Rightarrow} h_{1}^{\iota}(x_{2}, \kappa_{\iota}^{2}) \times \overline{h}_{1}^{\iota}(x_{1}, \kappa_{\iota}^{\iota})$

Unpolarised cross section

^[2] D. Boer et al., Phys. Rev. D60 (1999) 014012.

ANTIPROTONS!!

DY azimuthal asymmetries not suppressed by nonvalence-like contributions.

DETECTOR STUDIES IN PROGRESS

Question time

Ideal because:

 h₁ not to be unfolded with fragmentation functions

• chirally odd functions not suppressed (like in DIS)

lepton plane (cm)

Collins-Soper frame: ^[1]Phys. Rev. D16 (1977) 2219.

Drell-Yan Asymmetries — $\bar{p} p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X$ $\frac{1}{\sigma}\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \propto \left(1 + \cos^2\theta + \frac{\nu}{2}\sin^2\theta\cos^2\varphi + \rho|S_{1T}|\sin^2\theta\sin(\varphi - \varphi_{S_1}) + \cdots\right)$ $\lambda \sim 1, \mu \sim 0$ $\tau = |S_{1T}| \frac{2 \sin 2 \hat{\Theta} \sin(\varphi - \varphi_{S_1})}{1 + \cos^2 \theta} \frac{M}{\sqrt{2}}$

Even unpolarised \bar{p} beam on polarised p, or polarised \bar{p} on unpolarised p are powerful tools to investigate $\kappa_{\rm T}$ dependence of QDF D. Boer et al., Phys. Rev. D60 (1999) 014012. Drell-Yan Asymmetries — $\bar{p}^T p^T \rightarrow \mu^+ \mu^- X$

RHIC energies: $\sqrt{s}=100 \text{ GeV}$ $M^2=100 \implies \tau \le 10^{-2} \implies \text{small } x_1 \text{ and/or } x_2$ $h_1^a(x,Q^2)$ evolution much slower^[1] than $\Delta q(x,Q^2)$ and $q(x,Q^2)$ at small x

 A_{TT} @ RHIC very small, smaller \sqrt{S} would help^[1]

Drell-Yan Asymmetries — $\bar{p}^T p^T \rightarrow \mu^+ \mu^- X$ $\sum e_{q}^{2} \left| h_{1q}^{\bar{p}}(x_{1}) h_{1\bar{q}}^{p}(x_{2}) + h_{1\bar{q}}^{\bar{p}}(x_{1}) h_{1q}^{p}(x_{2}) \right|$ $\sum e_{a}^{2} h_{1q}^{p}(x_{1}) h_{1q}^{p}(x_{2})$ $\sum_{q} e_{q}^{2} \Big[q^{\bar{p}}(x_{1}) \bar{q}^{p}(x_{2}) + \bar{q}^{\bar{p}}(x_{1}) q^{p}(x_{2}) \Big] \xrightarrow{i}_{\text{large x}} \hat{a}_{\text{TT}} \frac{q}{\sum_{q} e_{q}^{2} q^{p}(x_{1}) q^{p}(x_{2})}$ $A_{TT} = \hat{a}_{TT} - \hat{a}_{TT}$ A_{TT} still small @ large \sqrt{S} and M² due to slow evolution of $h_1^a(x,Q^2)$ Large A_{TT} expected^[1] for \sqrt{S} and M² not too large and τ not too small Arr^{pp}/arr Assuming^[1] $h_{1q}(x,Q_0^2) = \Delta q(x,Q_0^2) \otimes Q_0^2 = 0.23 (GeV/c)^2$ 0.3

HESR:
$$s_{max} = 30 \div 45 \text{ GeV}^2$$

 $M^2 \ge M_{J/\psi}^2 \longrightarrow \tau \ge 0.3$
 A_{TT} direct access
to valence quark h_1
 $h_{1q_v}(x_1) \times h_{1q_v}(x_2)$

Angular distribution in CS frame

Conway et al, Phys. Rev. D39 (1989) 92

• 30% asymmetry observed for π^{-}

Angular distributions for \bar{p} and $\pi - \pi - N$, $\bar{p}N @ 125 \text{ GeV/c}$

Transverse Single Spin Asymmetries

• DY-SSA (A_T) possible only @ RHIC, p[†]p-scattering: $\sigma_{\bar{p}p}^{DY}$ @ smaller s >> σ_{pp}^{DY} @ large s