J / Ψ nuclear dependence vrs rapidity, $\times A u, X F$ PHENIX compared to lower energy measurements

Hoyer, Sukhatme, Vanttinen

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
61

Stan Brodsky
SLAC

$A^{2 / 3}$ component

J. Badier et al, NA3

Excess beyond conventional PQCD subprocesses

Leading Hadron Production from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
63

Stan Brodsky
SLAC

In nuclear case, Color-Octet IC Fock state absorbed on front surface

Scattering on
Nucleon via one $\frac{d \sigma}{d x_{F}}(p A \rightarrow J / \psi X)=A^{2 / 3} \times \frac{d \sigma}{d x_{F}}(p N \rightarrow J / \psi X)$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 64

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

Measure diffractive hidden charm production Even close to threshold at forward x_{F}

$$
\begin{gathered}
\frac{d \sigma}{d t_{1} d t_{2} d x_{F}}(\bar{p} p \rightarrow \bar{p}+J / \psi+p) \\
\frac{d \sigma}{d t d x_{F}}(\bar{p} p \rightarrow \bar{p}+J / \psi+X)
\end{gathered}
$$

Anomalous nuclear dependence

$$
\begin{aligned}
& \frac{d \sigma}{d x_{F}}(\bar{p} A \rightarrow J / \psi+X) \\
& A^{\alpha\left(x_{2}\right)} \text { versus } A^{\alpha\left(x_{F}\right)} \\
& \text { Important Tests of Intrinsic Charm }
\end{aligned}
$$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 65

Stan Brodsky
SLAC

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
66

Stan Brodsky
SLAC

Nuclear Shadowing in QCD

Shadowing depends on understanding leading twistdiffraction in DIS
Nuclear Shadowing not included in nuclear LFWF !
Dynamical effect due to virtual photon interacting in nucleus

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
67

Stan Brodsky
SLAC

Reggeon
 Exchange

Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$
Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$

Crticaltest: Tagged Drell-Yan

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
68

Stan Brodsky
SLAC

Predicted nuclear shadowing and and antishadowing at

$Q^{2}=1 \mathrm{GeV}^{2}$

S. J. Brodsky, I. Schmidt and J. J. Yang,
"Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,"
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].
Stan Brodsky
SLAC

Shadowing and Antishadowing in Lepton-Nucleus Scattering

- Shadowing: Destructive Interference of Two-Step and One-Step Processes Pomeron Exchange
- Antishadowing: Constructive Interference of Two-Step and One-Step Processes! Reggeon and Odderon Exchange
- Antishadowing is Not Universal!

Electromagnetic and weak currents: different nuclear effects!
Potentially significant for NuTeV Anomaly\}

Jian-Jun Yang
Ivan Schmidt
Hung Jung Lu
sjb

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
70

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

Measure Non-Universal Anti-Shadowing in
Drell-Yan

$$
\bar{p} A \rightarrow \ell^{+} \ell^{-} X
$$

$$
\begin{array}{rr}
Q^{2}=x_{1} x_{2} s & x_{1} x_{2}=.05, x_{F}=x_{1}-x_{2} \\
A^{\alpha\left(x_{1}\right)}=\frac{2 \frac{d \sigma}{d Q^{2} d x_{F}}\left(\bar{p} A \rightarrow \ell^{+} \ell^{-} X\right)}{A \frac{d \sigma}{d Q^{2} d x_{F}}\left(\bar{p} d \rightarrow \ell^{+} \ell^{-} X\right)}
\end{array}
$$

Higher twist effects at high x_{F} :
Deviations from $\left(1+\cos ^{2} \theta\right)$
$\cos 2 \phi$ correlation.

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 71

Stan Brodsky
SLAC

Topics for FAIR in Inclusive High Pt Reactions

Counting Rules at fixed $x_{T}=\frac{2 p_{T}}{\sqrt{s}}$ and $\theta_{C M}$

- Leading Twist vs Higher Twist Processes
- Charm at Threshold and QCD Schwinger Sommerfeld Correction

FAIR Workshop October 15-16, 2007
$p p \rightarrow \gamma X$

$$
\sqrt{s}^{n} E \frac{d \sigma}{d^{3} p}(p p \rightarrow \gamma X) \text { at fixed } x_{T}
$$

x_{T}-scaling of
direct photon
production is
consistent with
PQCD

Crucial Test of Leading -Twist QCD: Scaling at fixed X_{T}

$$
\begin{gathered}
E \frac{d \sigma}{d^{3} p}(p N \rightarrow \pi X)=\frac{F\left(x_{T}, \theta_{C M}\right)}{p_{T}^{n} f f} \\
\boldsymbol{n}_{e f f}=\boldsymbol{4}
\end{gathered}
$$

Bjorken scaling

Conformal scaling: $\mathbf{n}_{\text {eff }}=\mathbf{2} \mathbf{n a c t i v e}^{\mathbf{- 4}}$

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
76

Stan Brodsky
SLAC

PQCD prediction: Modification of power fall-off due to DGLAP evolution and the Running Coupling

Key test of PQCD: power fall-off at fixed x_{T}

$$
E \frac{d \sigma}{d^{3} p}(p p \rightarrow H X)=\frac{F\left(x_{T}, \theta_{C M}\right)}{p_{T}^{n_{e f f}}}
$$

Baryon can be made directly within hard subprocess

Bjorken
Blankenbecler, Gunion, sjb Berger, sjb
Hoyer, et al: Semi-Exclusive

Collision can produce 3 collinear quarks
$q q \rightarrow B \bar{q}$

$$
\mathbf{n}_{\text {eff }}=\mathbf{2 \mathbf { n } _ { \text { active } } - \mathbf { 4 }}
$$

$$
\frac{n_{\mathrm{eff}}}{}=8
$$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
79

Stan Brodsky
SLAC

Evidence for Dírect, Higher-Twist

 Subprocesses- Anomalous power behavior at fixed x_{T}
- Protons more likely to come from direct subprocess than pions
- Protons less absorbed than pions in central nuclear collisions because of color transparency
- Predicts increasing proton to pion ratio in central collisions
- Exclusive-inclusive connection at $\mathrm{x}_{\mathrm{T}}=\mathrm{I}$

FAIR Workshop October 15-16, 2007

SLAC

Light-Front Wavefunctions

$$
P^{+}=P^{0}+P^{z}
$$

Fixed $\tau=t+z / c$

Invariant under boosts! Independent of P^{μ}

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
8I

Stan Brodsky
SLAC

Hadron Dynamics at the Amplitude Level

- LFWFS are the universal hadronic amplitudes which underlie structure functions, GPDs, exclusive processes.
- Relation of spin, momentum, and other distributions to physics of the hadron itself.
- Connections between observables, orbital angular momentum
- Role of FSI and ISIs--Sivers effect

Deep Inelastic Lepton-Proton Scattering

Imaginary Part of Forward Virtual Compton Amplitude $q\left(x, Q^{2}\right)=\sum_{n} \int^{k_{\perp}^{2} \leq Q^{2} \perp} d^{2} k_{\perp}\left|\Psi_{n}\left(x, k_{\perp}\right)\right|^{2}$ $x=x_{q}$

All spin, flavor distributions

$$
\left.\begin{aligned}
& \text { ve Functions } \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \\
& \sim_{\sim}^{\sim} \\
& \mathrm{x}_{\mathrm{q}}, \overrightarrow{\mathrm{k}}_{\perp} \\
& \rightarrow \sim
\end{aligned}\right|^{2}
$$

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 83

Stan Brodsky
SLAC

Annihilation amplitude needed for Lorentz Invariance

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
84

Stan Brodsky
SLAC

Consequences of $A d S / C F T$ for Antiproton physics

- Analytic form for form factors, GPDs, distribution amplitude
- Matrix elements and LFWFs for baryon scattering amplitudes: Quark Counting Rules!
- Orbital angular momentum in baryon wavefunction for Pauli form factor, SSAs
- Dominance of quark interchange at short distances
- Effective Regge trajectories
- Regge intercepts at negative integers at large t

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
85

Stan Brodsky
SLAC

GPDs \& Deeply Virtual Exclusive Processes

"handbag" mechanism

Deeply Virtual Compton Scattering (DVCS)

x - longitudinal quark
momentum fraction

2ξ - longitudinal momentum transfer

$\sqrt{-t}-$ Fourier conjugate
to transverse impact
parameter

$$
H(x, \xi, t), E(x, \xi, t), \ldots
$$

$$
\xi=\frac{x_{B}}{2-x_{B}}
$$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
86

Stan Brodsky
SLAC

Light-cone wavefunction representation of deeply virtual Compton scattering *

Stanley J. Brodsky ${ }^{\text {a }}$, Markus Diehl ${ }^{\text {a, } 1}$, Dae Sung Hwang ${ }^{\text {b }}$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
87

Stan Brodsky
SLAC

Example of LFWF representation of GPDs ($\mathrm{n}=>\mathrm{n}$)

Diehl,Hwang, sjb

$$
\begin{aligned}
\frac{1}{\sqrt{1-\zeta}} & \frac{\Delta^{1}-i \Delta^{2}}{2 M} E_{(n \rightarrow n)}(x, \zeta, t) \\
=(\sqrt{1-\zeta})^{2-n} \sum_{n, \lambda_{i}} \int \prod_{i=1}^{n} & \frac{\mathrm{~d} x_{i} \mathrm{~d}^{2} \vec{k}_{\perp i}}{16 \pi^{3}} 16 \pi^{3} \delta\left(1-\sum_{j=1}^{n} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n} \vec{k}_{\perp j}\right) \\
& \times \delta\left(x-x_{1}\right) \psi_{(n)}^{\uparrow *}\left(x_{i}^{\prime}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{(n)}^{\downarrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
\end{aligned}
$$

where the arguments of the final-state wavefunction are given by

$$
\begin{array}{lll}
x_{1}^{\prime}=\frac{x_{1}-\zeta}{1-\zeta}, & \vec{k}_{\perp 1}^{\prime}=\vec{k}_{\perp 1}-\frac{1-x_{1}}{1-\zeta} \vec{\Delta}_{\perp} & \text { for the struck quark } \\
x_{i}^{\prime}=\frac{x_{i}}{1-\zeta}, & \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}+\frac{x_{i}}{1-\zeta} \vec{\Delta}_{\perp} & \text { for the spectators } i=2, \ldots, n
\end{array}
$$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
88

Stan Brodsky
SLAC

Link to DIS and Elastic Form Factors

$$
\begin{aligned}
& \text { DIS at } \quad \xi=t=0 \\
& H^{q}(x, 0,0)=q(x), \quad-\bar{q}(-x) \\
& \widetilde{H}^{q}(x, 0,0)=\Delta q(x), \Delta \bar{q}(-x)
\end{aligned}
$$

Form factors (sum rules)

$\int_{d} d x \sum_{q}\left[H^{q}(x, \xi, t)\right]=F_{1}(t)$ Dirac f.f.
$\int_{1}^{1} d x \sum_{q}\left[E^{q}(x, \xi, t)\right]=F_{2}(t)$ Pauli f.f.
$\int_{-1}^{1} d x \widetilde{H}^{q}(x, \xi, t)=G_{A, q}(t), \int_{-1}^{1} d x \widetilde{E}^{q}(x, \xi, t)=G_{P, q}(t)$

Verified using LFWFs
Diehl,Hwang, sjb

Quark angular momentum (Ji's sum rule)

$$
J^{q}=\frac{1}{2}-J^{G}=\frac{1}{2} \int_{-1}^{1} x d x\left[H^{q}(x, \xi, 0)+E^{q}(x, \xi, 0)\right]
$$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
89

Stan Brodsky
SLAC

New Perspectives in QCD from AdS/CFT

- Need to understand QCD at the Amplitude Level: Hadron wavefunctions!
- Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 90

Stan Brodsky
SLAC

Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to the Schrodinger Equation for Atomic Physics
- AdS/QCD Holographic Model

New Way to Model QCD: AdS/CFT

- Start with Maldacena Correspondence
- Mathematical Representation of Lorentz Invariant and Conformal (Scale-Free) Theories
- Add new 5 th space dimension to 3^{+1} space-time
- Add Confinement: Holographic Model with Color Confinement and Quark Counting Rules de Teramond, sjb

FAIR Workshop October 15-16, 2007

Conformal Theories are invariant under the Poincare and conformal transformations with

$$
\mathbf{M}^{\mu \nu}, \mathbf{P}^{\mu}, \mathbf{D}, \mathbf{K}^{\mu}
$$

the generators of $\operatorname{SO}(4,2)$
$\mathrm{SO}_{(4,2)}$ has a mathematical representation on AdS_{5}

5-Dimensional

\sum| Anti-de Sitter |
| :---: |
| Spacetime |

Truncated AdS Space

4-Dimensional Flat Spacetime (hologram)

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
94
Stan Brodsky
SLAC

New Way to Solve QCD: AdS/CFT

- Maldacena Correspondence
- Mathematical Representation of Lorentz Invariant and Conformal (Scale-Free) Theories
- Add new 5 th space dimension to $3+\mathrm{I}$ space-time
- Holographic Model with Color Confinement and Quark Counting Rules

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 95

Stan Brodsky
SLAC

5-Dimensional

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 96

Stan Brodsky
SLAC

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
97

Stan Brodsky
SLAC

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
98

Stan Brodsky
SLAC

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
99

Stan Brodsky
SLAC

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 100

Stan Brodsky
SLAC

- Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_{0}=1 / \Lambda_{\mathrm{QCD}}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).
- Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ - usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

We consider both holographic models

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics IOI

Stan Brodsky
SLAC

Predictions of AdS/CFT

Only one

 parameter!Entire lightquark baryon spectrum

Guy de Teramond SJB

Phys.Rev.Lett. 94:201601,2005 hep-th/0501022

Fig: Predictions for the light baryon orbital spectrum for $\Lambda_{Q C D}=0.22 \mathrm{GeV}$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 102

Stan Brodsky
SLAC

$$
\begin{gathered}
\mathcal{M}^{2}=2 \kappa^{2}(2 n+2 L+S) . \\
S=1
\end{gathered}
$$

Spacelike pion form factor from AdS/CFT

Data Compilation from Baldini, Kloe and Volmer

- Harmonic Oscillator Confinement

Truncated Space Confinement
One parameter - set by pion decay constant
G. de Teramond, sjb

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
104

Stan Brodsky
SLAC

Spacelike and Timelike Pion form factor from AdS/CFT

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
105
G. de Teramond, sjb

Harmonic
Oscillator Confinement scale set by pion decay constant
$\kappa=0.38 \mathrm{GeV}$

Stan Brodsky
SLAC
G. de Teramond, sjb

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
106

Stan Brodsky
SLAC

Dirac Neutron Form Factor

(Valence Approximation)

$$
Q^{4} F_{1}^{n}\left(Q^{2}\right)\left[\mathrm{GeV}^{4}\right]
$$

Prediction for $Q^{4} F_{1}^{n}\left(Q^{2}\right)$ for $\Lambda_{\mathrm{QCD}}=0.21 \mathrm{GeV}$ in the hard wall approximation. Data analysis from Diehl (2005).

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
107

Stan Brodsky
SLAC

From overlap of $L=1$ and $L=0$ LFWFs

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 108

Stan Brodsky
SLAC

Note: Contributions to Mesons Form Factors at Large Q in AdS/QCD

- Write form factor in terms of an effective partonic transverse density in impact space \mathbf{b}_{\perp}

$$
F_{\pi}\left(q^{2}\right)=\int_{0}^{1} d x \int d b^{2} \widetilde{\rho}(x, b, Q)
$$

with $\widetilde{\rho}(x, b, Q)=\pi J_{0}[b Q(1-x)]|\widetilde{\psi}(x, b)|^{2}$ and $b=\left|\mathbf{b}_{\perp}\right|$.

- Contribution from $\rho(x, b, Q)$ is shifted towards small $\left|\mathbf{b}_{\perp}\right|$ and large $x \rightarrow 1$ as Q increases.

Fig: LF partonic density $\rho(x, b, Q)$: (a) $Q=1 \mathrm{GeV} / \mathrm{c}$, (b) very large Q.

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
109

Stan Brodsky
SLAC

New Perspectives on QCD Phenomena from AdS/CFT

- AdS/CFT: Duality between string theory in Anti-de Sitter Space and Conformal Field Theory
- New Way to Implement Conformal Symmetry
- Holographic Model: Conformal Symmetry at Short Distances, Confinement at large distances
- Remarkable predictions for hadronic spectra, wavefunctions, interactions
- AdS/CFT provides novel insights into the quark structure of hadrons

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 110

Stan Brodsky
SLAC

$$
\begin{gathered}
L F(3+1) \\
\psi\left(x, \vec{b}_{\perp}\right) \\
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \\
\psi\left(x, \vec{b}_{\perp}\right) \xrightarrow{A d S_{5}} \xrightarrow{(1-x)} \\
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta)
\end{gathered}
$$

Holography: Unique mapping derived from equality of LF andAdS formula for current matrix elements

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
III

Stan Brodsky
SLAC

Holography: Map AdS/CFT to 3+1 LF Theory

Relativistic radial equation: Frame Independent

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)
$$

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
$$

Effective conformal potential:

$$
V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}}
$$

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
112

Stan Brodsky
SLAC

Holographic Model

$$
\zeta\left[\mathrm{GeV}^{-\mathbf{1}}\right]
$$

$$
\zeta=b \sqrt{x(1-x)}
$$

Guy de Teramond
SJB

Two-parton ground state LFWF in impact space $\psi(x, b)$ for a for $n=2, \ell=0, k=1$.

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 113

Stan Brodsky
SLAC

Boost Invariant 3+1 Light-Front Wave Equations
$J=0,1,1 / 2,3 / 2$ plus L
Integrable!
Hadron Spectra, Wavefunctions, Dynamics

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
114

Stan Brodsky
SLAC

Novel Dynamical Tests of QCD at FAIR

- Characteristic momentum scale of QCD: 300 MeV
- Many Tests of AdS/CFT predictions possible
- Exclusive channels: Conformal scaling laws, quarkinterchange
- $\overline{\mathrm{p}} \mathrm{p}$ scattering: fundamental aspects of nuclear force
- Color transparency: Coherent color effects
- Nuclear Effects, Hidden Color, Anti-Shadowing
- Anomalous heavy quark phenomena
- Spin Effects: $\mathrm{A}_{\mathrm{N}}, \mathrm{A}_{\mathrm{NN}}$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
115

Stan Brodsky
SLAC

Nucleon Form ractors

Nucleon current operator (Dirac \& Pauli)

$$
\Gamma^{\mu}(q)=\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i}{2 M_{N}} \sigma^{\mu \nu} q_{\nu} F_{2}\left(q^{2}\right)
$$

Electric and Magnetic Form Factors

$$
\begin{aligned}
& G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\tau F_{2}\left(q^{2}\right) \\
& G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
\end{aligned} \tau=\frac{q^{2}}{4 M_{N}^{2}}
$$

$$
\xrightarrow[\sim]{\sim}
$$

$$
\stackrel{e^{-0}}{\substack{-\infty}} \frac{e^{+}}{0}
$$

Annihilation

$$
e^{+} e^{-} \rightarrow p \bar{p}
$$

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \sqrt{1-1 / \tau}}{4 q^{2}}\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right]
$$

Simone Pacetti

Ratio $\left|G_{E}^{p}\left(q^{2}\right) / G_{M}^{p}\left(q^{2}\right)\right|$ and dispersion relations

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
116

Stan Brodsky
SLAC

Exclusive Processes

Probability decreases with number of constituents!

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 117

Stan Brodsky
SLAC

- Phenomenological success of dimensional scaling laws for exclusive processes

$$
d \sigma / d t \sim 1 / s^{n-2}, \quad n=n_{A}+n_{B}+n_{C}+n_{D}
$$

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies Farrar and sjb (1973); Matveev et al. (1973).

- Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space (hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 118

Stan Brodsky
SLAC

Quark Counting Rules for Exclusive Processes

- Power-law fall-off of the scattering rate reflects degree of compositeness
- The more composite -- the faster the fall-off
- Power-law counts the number of quarks and gluon constituents
- Form factors: probability amplitude to stay intact
- $F_{H}(Q) \propto \frac{1}{\left(Q^{2}\right)^{n-1}} \quad \mathrm{n}=$ \# elementary constituents

FAIR Workshop
October 15-16, 2007
Novel Anti-Proton QCD Physics
119

Stan Brodsky
SLAC

PQCD and Exclusive Processes

$$
M=\int \prod d x_{i} d y_{i} \phi_{F}(x, \widetilde{Q}) \times T_{H}\left(x_{i}, y_{i}, \tilde{Q}\right) \phi_{I}\left(y_{i}, Q\right)
$$

- Iterate kernel of LFWFs when at high virtuality; distribution amplitude contains all physics below factorization scale
- Rigorous Factorization Formulae: Leading twist
- Underly Exclusive B-decay analyses
- Distribution amplitude: gauge invariant, OPE, evolution equations, conformal expansions
- BLM scale setting: sum nonconformal contributions in scale of running coupling
- Derive Dimensional Counting Rules/ Conformal Scaling

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
120

Stan Brodsky
SLAC

