Timelike proton form factor in PQCD

Lepage and Sjb

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
121

Stan Brodsky
SLAC

Timelike Proton Form Factor

- Define "Effective" form factor by
$\sigma=\frac{4 \pi \alpha^{2} \beta C}{3 m_{p \bar{p}}^{2}}|F|^{2},|F|=\sqrt{\left|G_{M}\right|^{2}+\frac{2 m_{p}^{2}}{m_{p \bar{p}}^{2}}\left|G_{E}\right|^{2}}$
- Peak at threshold, sharp dips at 2.25 GeV , 3.0 GeV.
- Good fit to pQCD prediction for high m_{pp}.
$F(s) \propto \frac{\log ^{-2} \frac{s}{\Lambda^{2}}}{s^{2}}$

Time-like Form Factors

- All data measure absolute cross section $\mathrm{G}_{\mathrm{E}}=\mathrm{G}_{\mathrm{M}}$
- PANDA will provide independent measurement of G_{E} and G_{M}
- widest kinematic range in a single experiment
- Time-like form factors are complex
- precision experiments will reveal these structures

PANDA range

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 123

Stan Brodsky
SLAC

More to explore

- Time-like form factors are analytically connected to space-like form factors
- Time-like form factors are complex, get phase in addition
- expect a rich structure in time-like region from dispersion relation model
- even more to learn from single spin asymmetries
B. Seitz

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
124

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

Measurement of hadron time-like form factors

> Leading power in QCD
> $F_{H}(s) \propto\left[\frac{1}{s}\right]^{n} n^{-1}$

Test QCD Counting Rules

Conformal Symmetry: AdS/CFT Hadron Helicity Conservation

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics I25

$$
\sum_{\text {initial }} \lambda_{H}-\sum_{\text {total }} \lambda_{H}=0
$$

Stan Brodsky
SLAC

Proton timelike form factor.

Kaon timelike form factor.

New results from CLEO

$$
\begin{aligned}
Q^{2}\left|F_{K}\left(13.48 \mathrm{GeV}^{2}\right)\right| & =0.85 \pm 0.05 \text { (stat) } \pm 0.02 \text { (syst) } \mathrm{GeV}^{2} \\
Q^{4}\left|G_{M}^{p}\left(13.48 \mathrm{GeV}^{2}\right)\right| & =2.54 \pm 0.36 \text { (stat) } \pm 0.16 \text { (syst) } \mathrm{GeV}^{4}
\end{aligned}
$$

The proton magnetic form factor result agrees with that measured in the reverse reaction $p \bar{p} \rightarrow e^{+} e^{-}$at Fermilab. The kaon form factor measurement is the first ever direct measurement at $\left|Q^{2}\right|>4 \mathrm{GeV}^{2}$.

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 126

Stan Brodsky
SLAC

- Two-photon exchange correction, elastic and inelastic nucleon channels, give significant; interference with one-photon exchange, destroys Rosenbluth method

Blunden, Melnitchouk; Afanasev, Chen,Carlson, Vanderhaegen, sjb

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
127

Stan Brodsky
SLAC

Single-spin polarization effects and the determination of timelike proton form factors
(

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 128

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics I29

Stan Brodsky
SLAC

Single-spin polarization effects and the determination of timelike proton form factors

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 130

Stan Brodsky
SLAC

Single-spin polarization effects and the determination of timelike proton form factors

Quark-Counting: $\frac{d \sigma}{d t}(p p \rightarrow p p)=\frac{F\left(\theta_{C M}\right)}{s^{10}} \quad n=4 \times 3-2=10$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
132

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

$$
\frac{d \sigma}{d t}(\bar{p} p \rightarrow \bar{p} p) \text { at large } p_{T}
$$

Test PQCD AdS/CFT conformal scaling:
twist $=$ dimension - spin $=12$

$$
\frac{d \sigma}{d t}(\bar{p} p \rightarrow \bar{p} p) \sim \frac{|F(t / s)|^{2}}{s^{10}}
$$

Test Quark Interchange Mechanism

$$
M(s, t) \sim \frac{F(t / s)}{s^{4}}
$$

$$
M \propto \frac{1}{s^{2} u^{2}}
$$

Single-spin asymmetry A_{N}
Exclusive Transversity $A_{N N}$

Study Fundamental Aspects of Nuclear Force

Test color transparency

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 133

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

$\frac{d \sigma}{d t}(\bar{p} p \rightarrow \gamma \gamma)$ at fixed angle, large p_{T}

$$
\frac{d \sigma}{d t}(\bar{p} p \rightarrow \gamma \gamma)=\frac{F(t / s)}{s^{6}}
$$

Tests PQCD and AdS/CFT Conformat scaling
Handbag Approximation Invalid in PQCD
Single-spin asymmetry A_{N}
Exclusive Transversity $A_{N N}$
Test color transparency

FAIR Workshop
Novel Anti-Proton QCD Physics
134

Stan Brodsky
SLAC

Compton-Scattering Cross Section on the Proton at High Momentum Transfer

Alan Nathan, et al

Compton at fixed angles falls faster than photoproduction!

Open points: Cornell measurement M. A. Shupe et al., Phys. Rev. D 19, 1921 (1979).
 Jefferson Lab
Hall A
Collaboration

Ratio of Real Compton-Scattering Cross Section
to Electron -Proton Scattering at Fixed CM Angle
JLab E99-114 Results: RCS/ep

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 136

Stan Brodsky
SLAC

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} t}=\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\right)_{\mathrm{KN}}\left[f_{V} \mathrm{R}_{\mathrm{V}}^{2}(t)+f_{A} \mathrm{R}_{\mathrm{A}}^{2}(t)\right]
$$

Agrees with PQCD

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
137

Stan Brodsky
SLAC

Recent results from Belle

PQCD Conformal Scaling for range of $\theta_{C M}$ $s^{5} \Delta \sigma(\gamma \gamma \rightarrow \bar{p} p) \simeq \mathrm{const}$

Energy dependence

Angular dependence
(GPD curve from Kroll/Schäfer)

Michael Düren

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 138

Stan Brodsky
SLAC

Cross section comparison

$\begin{array}{lr}\text { Belle } & \gamma \gamma \rightarrow p \bar{p} \\ \text { Fermilab } & p \bar{p} \rightarrow \gamma \gamma \\ \end{array}$
PANDA $p \bar{p} \rightarrow \gamma \gamma$

E760 feed down limit from $\pi \pi$ and $\pi \gamma$ (upper limit of $\gamma \gamma$ signal;approximately)

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
139

Stan Brodsky
SLAC

FAIR Workshop
Novel Anti-Proton QCD Physics
140
Stan Brodsky
SLAC

Key QCD Experiment at FAIR

$$
\bar{p} p \longrightarrow \gamma^{*} \gamma
$$

- Test DVCS in Timelike Regime
- J=o Fixed pole: q^{2} independent
- Analytic Continuation of GPDs
- Light-Front Wavefunctions

- charge asymmetry from interference
$\bar{p} p \rightarrow \gamma^{*} \rightarrow \ell^{+} \ell^{-} \rightarrow \ell^{+} \ell^{-} \gamma \quad \bar{p} p \rightarrow \bar{p} p \gamma \rightarrow \gamma^{*} \gamma \rightarrow \ell^{+} \ell^{-} \gamma$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics I4I

Stan Brodsky
SLAC

Michael Düren

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 142

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

$$
\frac{d \sigma}{d t}(\bar{p} p \rightarrow \gamma \gamma) \text { at fixed angle, large } p_{T}
$$

$$
\frac{d \sigma}{d t}(\bar{p} p \rightarrow \gamma \gamma)=\frac{F(t / s)}{s^{6}}
$$

Local Two-Photon
(Seagull) Interaction
Close, Gunion, sjb

Tests PQCD and AdS/CFT Conformal scaling
Angle-Independent J=o Fixed Pole Contribution:
$M(\bar{p} p \rightarrow \gamma \gamma)=F(s) \propto \frac{1}{s^{2}}$

$$
\frac{d \sigma}{d t}(\bar{p} p \rightarrow \gamma \gamma) \propto \frac{1}{s^{6}}
$$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

Measure all antiproton + proton exclusive channels

$$
\bar{p} p \rightarrow \gamma \gamma
$$

PQCD: No handbag dominance for real photons
$J=0$ fixed pole from
local $q \bar{q} \rightarrow \gamma \gamma$ interactions

$$
\bar{p} p \rightarrow \gamma \pi^{0}
$$

$$
\bar{p} p \rightarrow K^{+} K^{-}
$$

- No handbag diagram
- Here the photons and the pion are produced in forward direction!
-Measure "Transition distribution amplitudes"
$p \bar{p} \rightarrow \gamma^{*} \pi$ explores the pion cloud
$p \bar{p} \rightarrow \gamma^{*} \rho$ explores the ρ cloud
$p \bar{p} \rightarrow \gamma^{*} \gamma$ explores the photon cloud
(Study next to lowest Fock state of the proton)

Michael Düren

B. Pire and L. Szymanowskı

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
145

Stan Brodsky
SLAC

CIM: Blankenbecler, Gunion, sjb

Quark Interchange
(Spin exchange in atomatom scattering)

Gluon Exchange (Van der Waal -.

Landshoff)

$$
\frac{d \sigma}{d t}=\frac{|M(s, t)|^{2}}{s^{2}}
$$

$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$
$M(s, t)_{\text {gluonexchange }} \propto s F(t)$
MIT Bag Model (de Tar), large N_{C}, ('t Hooft), AdS/CFT all predict dominance of quark interchange:

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
146

Stan Brodsky
SLAC

Remarkable prediction of AdS/CFT: Dominance of quark interchange

Example: $M\left(K^{+} p \rightarrow K^{+} p\right) \propto \frac{1}{u t^{2}}$
Exchange of common u quark
$M_{Q I M}=\int d^{2} k_{\perp} d x \psi_{C}^{\dagger} \psi_{D}^{\dagger} \Delta \psi_{A} \psi_{B}$
Holographic model (Classical level):

Hadrons enter 5th dimension of $A d S_{5}$

Quarks travel freely within cavity as long as separation $z<z_{0}=\frac{1}{\Lambda_{Q C D}}$

LFWFs obey conformal symmetry producing quark counting rules.

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
147

Stan Brodsky
SLAC

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
148

Stan Brodsky
SLAC

Comparison of Exclusive Reactions at Large \boldsymbol{t}

B. R. Baller, ${ }^{\text {(a) }}$ G. C. Blazey, ${ }^{\text {(b) }}$ H. Courant, K. J. Heller, S. Heppelmann, ${ }^{(c)}$ M. L. Marshak, E. A. Peterson, M. A. Shupe, and D. S. Wahl ${ }^{\text {(d) }}$

University of Minnesota, Minneapolis, Minnesota 55455
D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi

Brookhaven National Laboratory, Upton, New York 11973
and
S. Gushue ${ }^{(\mathrm{e})}$ and J. J. Russell

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747
(Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of $9.9 \mathrm{GeV} / \mathrm{c}$, near 90° c.m.: $\pi^{ \pm} p \rightarrow p \pi^{ \pm}, p \rho^{ \pm}, \pi^{+} \Delta^{ \pm}, K^{+} \Sigma^{ \pm},\left(\Lambda^{0} / \Sigma^{0}\right) K^{0}$; $K^{ \pm} p \rightarrow p K^{ \pm} ; p^{ \pm} p \rightarrow p p^{ \pm}$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

$$
\begin{aligned}
& \pi^{ \pm} p \rightarrow p \pi^{ \pm}, \\
& K^{ \pm} p \rightarrow p K^{ \pm}, \\
& \pi^{ \pm} p \rightarrow p \rho^{ \pm}, \\
& \pi^{ \pm} p \rightarrow \pi^{+} \Delta^{ \pm}, \\
& \pi^{ \pm} p \rightarrow K^{+} \Sigma^{ \pm}, \\
& \pi^{-} p \rightarrow \Lambda^{0} K^{0}, \Sigma^{0} K^{0}, \\
& p^{ \pm} p \rightarrow p p^{ \pm} .
\end{aligned}
$$

Key QCD Experiment at FAIR

$$
\bar{p} p \rightarrow K^{+} K^{-}
$$

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
150

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

$$
p p \rightarrow \Delta^{++} \Delta^{0} \rightarrow\left(p \pi^{+}\right)+\left(p \pi^{-}\right)
$$

Test quark interchange mechanism

Measure Ratio

$\frac{d \sigma}{d t}\left(p p \rightarrow \Delta^{+}+\Delta^{0}\right): \frac{d \sigma}{d t}(p p \rightarrow p p)$

$$
M \propto \frac{1}{u^{2} t^{2}}
$$

Test $\frac{d \sigma}{d t}=\frac{F\left(\theta_{c m}\right)}{s^{10}} \quad$ AdS/CFT conformal scaling
Single-Spin Asymmetry A_{N} of Δ
Test Hadron Helicity Conservation:
$\lambda_{\Delta^{++}}+\lambda_{\Delta^{-}}=\lambda_{p}+\lambda_{p}=-1,0,+1$.

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 15I

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

P. V. Pobylitsa, V. Polyakov and M. Strikman,
"Soft pion theorems for hard near-threshold pion production,"
Phys. Rev. Lett. 87, 022001 (2001)

Small $p \pi$ invariant mass; low relative velocity

Soft-pion theorem relates
near-threshold pion production
to the nucleon distribution amplitude.

$$
\frac{d \sigma}{d t}(\bar{p} p \rightarrow(\pi \bar{p}) p)=\frac{F\left(\theta_{c m}\right)}{s^{10}}
$$

No extra fall-off Same scaling as

$$
\frac{d \sigma}{d t}(\bar{p} p \rightarrow \bar{p} p)=\frac{F\left(\theta_{c m}\right)}{s^{10}}
$$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 152

Stan Brodsky
SLAC

The remarkable anomaties of

 proton-proton scattering- Double spin correlations
- Single spin correlations
- Color transparency

Spin Correlations in Elastic $p-p$ Scattering

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 154

Stan Brodsky
SLAC

Unexpected

 spin effects in pp elastic scatteringlarger t region can be explored in $p \bar{p}$

K. Goulianos

Key QCD Experiment at FAIR

$$
A_{N N} \text { for } \bar{p} p \rightarrow \bar{p} p
$$

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 156

Stan Brodsky
SLAC

Strangeness Charm

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 157

Stan Brodsky
SLAC

"Exclusive Transversity"

Spin-dependence at large- $\mathrm{P}_{\mathrm{T}}\left(90^{\circ}{ }_{\mathrm{cm}}\right)$: Hard scattering takes place only with spins $\uparrow \uparrow$

Coincidence?: Quenching of Color Transparency

Coincidence?: Charm and Strangeness Thresholds

Alternative: Six-Quark Hidden-Color Resonances

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics

Stan Brodsky
SLAC

Spin, Coherence at heavy quark thresholds

OCD
Schwinger-Sommerfeld Enhancement at Heavy Quark Threshold

Hebecker, Kuhn, sib
S. J. Brodsky and G. F. de Teramond, "Spin Correlations, QCD Color Transparency And Heavy Quark Thresholds In Proton Proton Scattering," Phys. Rev. Lett. 60, 1924 (1988).

$$
P \stackrel{\rightharpoonup}{P} \rightarrow Q \bar{Q} X
$$

Strong distortion at threshold Preen O

$$
\sqrt{5_{T h}^{2}}=3+2 \cong 5 \mathrm{coV} \quad P P \rightarrow C \bar{C}
$$

8 quarks in δ-wave odd parity!

$$
\therefore \quad J=L=S=1 \quad f(p p
$$

$$
B=2
$$ resonance near threshold?

$$
\begin{aligned}
\frac{d \sigma}{d t}(p p & \rightarrow p p) \\
\sqrt{s} & \sim 5 \sin v
\end{aligned}
$$

$A_{N N}=I$ fo $J=1=S=1$ pips out
expect increase or ANN at $\begin{aligned} & \sqrt{5}=3,5,12 \text { Ger } \\ & \operatorname{Ocin}=90^{\circ}\end{aligned}$

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 159

Stan Brodsky SLAG

FAIR Workshop October 15-16, 2007
S. J. Brodsky and G. F. de Teramond, "Spin Correlations, QCD Color Transparency And Heavy Quark Thresholds In Proton Proton Scattering," Phys. Rev. Lett. 60, 1924 (1988).

Quark Interchange +8 -Quark Resonance
$\mid u u d u u d c \bar{c}>$ Strange and Charm Octoquark!

$$
M=3 \mathrm{GeV}, M=5 \mathrm{GeV}
$$

$$
J=L=S=1, B=2
$$

$$
A_{N N}=\frac{d \sigma(\uparrow \uparrow)-d \sigma(\uparrow \downarrow)}{d \sigma(\uparrow \uparrow)+d \sigma(\uparrow \downarrow)}
$$

Novel Anti-Proton QCD Physics 160

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

$$
\bar{p} p \rightarrow \bar{\Lambda}_{c}(\overline{c u d}) D^{0}(\bar{c} u) p
$$

Total open charm cross section at threshold

$$
\sigma(p p \rightarrow c X) \simeq 1 \mu b
$$

needed to explain Krisch $A_{N N}$

Compare with strangeness channels

$$
p p \rightarrow \wedge(s u d) K^{+}(\bar{s} u) p
$$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics I6I

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

- New QCD physics in proton-proton elastic scattering at the charm threshold
- Anomalously large charm production at threshold!!?
- Octoquark resonances?
- Color Transparency disappears at charm threshold
- Key physics at GSI: second charm threshold

$$
\begin{aligned}
& \bar{p} p \rightarrow \bar{p} p J / \psi \\
& \bar{p} p \rightarrow \bar{p} \wedge_{c} D
\end{aligned}
$$

Color Transparency

Bertsch, Gunion, Goldhaber, sjb
A. H. Mueller, sjb

- Fundamental test of gauge theory in hadron physics
- Small color dipole moments interact weakly in nuclei
- Complete coherence at high energies
- Clear Demonstration of CT from Diffractive Di-Jets

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 163

Stan Brodsky
SLAC

Color Transparency Ratio

J. L. S. Aclander et al., ex/0405025].

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
164

Stan Brodsky
SLAC

PHYSICAL REVIEW C 70, 015208 (2004)
Nuclear transparency in $90_{\text {c.m. }}^{\circ}$ quasielastic $A(p, 2 p)$ reactions
J. Aclander, ${ }^{7}$ J. Alster, ${ }^{7}$ G. Asryan, ${ }^{1, *}$ Y. Averiche, ${ }^{5}$ D. S. Barton, ${ }^{1}$ V. Baturin, ${ }^{2, \dagger}$ N. Buktoyarova, ${ }^{1, \dagger}$ G. Bunce, A. S. Carroll, ${ }^{1,+}$ N. Christensen, ${ }^{3, \S}$ H. Courant, ${ }^{3}$ S. Durrant, ${ }^{2}$ G. Fang, ${ }^{3}$ K. Gabriel, ${ }^{2}$ S. Gushue, ${ }^{1}$ K. J. Heller, ${ }^{3}$ S. Heppelmann, ${ }^{2}$
I. Kosonovsky, ${ }^{7}$ A. Leksanov, ${ }^{2}$ Y. I. Makdisi, ${ }^{1}$ A. Malki, ${ }^{7}$ I. Mardor, ${ }^{7}$ Y. Mardor, ${ }^{7}$ M. L. Marshak, ${ }^{3}$ D. Martel, ${ }^{4}$
E. Minina, ${ }^{2}$ E. Minor, ${ }^{2}$ I. Navon, ${ }^{7}$ H. Nicholson, ${ }^{8}$ A. Ogawa, ${ }^{2}$ Y. Panebratsev, ${ }^{5}$ E. Piasetzky, ${ }^{7}$ T. Roser, ${ }^{1}$ J. J. Russell, ${ }^{4}$
A. Schetkovsky, ${ }^{2, \dagger}$ S. Shimanskiy, ${ }^{5}$ M. A. Shupe, ${ }^{3, \|}$ S. Sutton, ${ }^{8}$ M. Tanaka, ${ }^{1,5}$ A. Tang, ${ }^{6}$ I. Tsetkov, ${ }^{5}$ J. Watson, ${ }^{6}$ C. White, ${ }^{3}$ J-Y. Wu, ${ }^{2}$ and D. Zhalov ${ }^{2}$

FAIR Workshop
Novel Anti-Proton QCD Physics 165

Stan Brodsky
SLAC

Color Transparency fails when $A_{n n}$ is large

FAIR Workshop
Novel Anti-Proton QCD Physics 166

Stan Brodsky
SLAC

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
167

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

$$
\begin{gathered}
\text { Test Color Transparency } \\
\frac{d \sigma}{d t}(\bar{p} A \rightarrow \bar{p} p(A-1)) \rightarrow Z \times \frac{d \sigma}{d t}(\bar{p} p \rightarrow \bar{p} p)
\end{gathered}
$$

No absorption of small color dipole at high p_{T}

Key test of local gauge theory
Traditional Glauber Theory: $\sigma_{A} \sim Z^{1 / 3} \sigma_{p}$
A.H. Mueller, SJB

FAIR Workshop
Novel Anti-Proton QCD Physics I68

SLAC

Kawtar Hafidi

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 169

Stan Brodsky
SLAC

Diffractive Dissociation of Pion

 into Quark Jets
E79r Ashery et al.

$$
M \propto \frac{\partial^{2}}{\partial^{2} k_{\perp}} \psi_{\pi}\left(x, k_{\perp}\right)
$$

Measure Light-Front Wavefunction of Pion Minimal momentum transfer to nucleus Nucleus left Intact!

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 170

Stan Brodsky
SLAC

Measure pion LFWF in diffractive dijet production

 Confirmation of color transparency| A-Dependence results: | $\sigma \propto A^{\alpha}$ | | |
| :---: | :---: | :---: | :---: |
| k_{t} range ($\mathrm{GeV} / \mathrm{c}$) | $\underline{\alpha}$ | α (CT) | |
| $1.25<k_{t}<1.5$ | $1.64+0.06-0.12$ | 1.25 | Ashery E791 |
| $1.5<k_{t}<2.0$ | 1.52 ± 0.12 | 1.45 | |
| $2.0<k_{t}<2.5$ | 1.55 ± 0.16 | 1.60 | |
| $\alpha($ Incoh. $)=0.70 \pm 0.1$ | | | |

Conventional Glauber Theory Ruled Out!

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics I7I

Factor of 7

Stan Brodsky
SLAC

Key Ingredients in E791 Experiment

Brodsky Mueller
Frankfurt Miller Strikman

Small color-dipole moment pion not absorbed;
interacts with each nucleon coherently QCD COLOR Transparency

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
172

Stan Brodsky
SLAC

A(π, dijet) data from FNAL

Coherent π^{+}diffractive dissociation with $500 \mathrm{GeV} / \mathrm{c}$ pions on Pt and C .

Fit to $\sigma=\sigma_{0} A^{\alpha}$
$\alpha=0.76$ from pion-nucleus total cross-section.

Aitala et al., PRL 864773 (2001)
L. L. Frankfurt, G. A. Miller, and M. Strikman, Found. Of Phys. 30 (2000) 533

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
173

Stan Brodsky
SLAC

Deuteron Photodisintegration and Dímensional Counting
P.Rossi et al, P.R.L. 94, 012301 (2005)

PQCD and AdS/CFT:
$s^{n_{t o t}-2 \frac{d \sigma}{d t}}(A+B \rightarrow C+D)=$ $\mathrm{F}_{A+B \rightarrow C+D}\left(\theta_{C M}\right)$

$$
n_{t o t}-2=
$$

$$
(1+6+3+3)-2=11
$$

$$
\gamma d \rightarrow(u u d d d u s \bar{s}) \rightarrow n p
$$

$$
\text { at } s \simeq 9 \mathrm{GeV}^{2}
$$

$$
\gamma d \rightarrow(u u d d d u c \bar{c}) \rightarrow n p
$$

$$
\text { at } s \simeq 25 \mathrm{GeV}^{2}
$$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 174

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

Test QCD scaling in hard exclusive nuclear amplitudes

Manifestations of Hidden Color in Deuteron Wavefunction

$$
\begin{aligned}
& \bar{p} d \rightarrow \pi^{-} p \\
& \bar{p} d \rightarrow n \gamma \\
& \bar{p} d \rightarrow \bar{p} d
\end{aligned}
$$

Conformal Scaling, AdS/CFT

$$
\frac{d \sigma}{d t}\left(\bar{p} d \rightarrow \pi^{-} p\right)=\frac{F\left(\theta_{c m}\right)}{s^{12}}
$$

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 175

Stan Brodsky
SLAC

- 15% Hidden Color in the Deuteron

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
176

Stan Brodsky
SLAC

- Remarkable Test of Quark Counting Rules
- Deuteron Photo-Disintegration $\gamma \mathrm{d} \rightarrow \mathrm{np}$

$$
\begin{aligned}
& \frac{d \sigma}{d t}=\frac{F(t / s)}{s^{n} t o t^{-2}} \\
& n_{t o t}=1+6+3+3=13
\end{aligned}
$$

Scaling characteristic of scale-invariant theory at short distances

Conformal symmetry

Hidden color: $\quad \frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{-}\right) \simeq \frac{d \sigma}{d t}(\gamma d \rightarrow p n)$
at high $p_{T} \quad$ Ratio predicted to approach 2:5

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 177

Stan Brodsky
SLAC

Deuteron Light-Front Wavefunction

$$
\text { Fixed } \tau=t+z / c
$$

$$
\psi_{d}\left(x_{i}, \vec{k}_{\perp i}\right)=\psi_{d}^{b o d y} \times \psi_{n} \times \psi_{p}
$$

Two color-singlet combinations of three $\left.3_{C}\right|^{\sum_{i}^{n}} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 178

Stan Brodsky
SLAC

Evolution of 5 color-singlet Fock states

5×5 Matrix Evolution Equation for deuteron distribution amplitude

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 179

Stan Brodsky
SLAC

Hidden Color in QCD Lepage, Ji, sjb

- Deuteron six quark wavefunction:
- 5 color-singlet combinations of 6 color-triplets -one state is $\ln \mathrm{p}>$
- Components evolve towards equality at short distances
- Hidden color states dominate deuteron form factor and photodisintegration at high momentum transfer
- Predict $\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{-}\right) \simeq \frac{d \sigma}{d t}(\gamma d \rightarrow p n)$ at high Q^{2}

$$
\text { Ratio }=2 / 5 \text { for asymptotic wf }
$$

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 180

Stan Brodsky
SLAC

Test of Hidden Color in Deuteron Photodisintegration

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 18I

Stan Brodsky
SLAC

Test of Hidden Color in Deuteron Photodisintegration

$$
R=\frac{\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{--}\right)}{\frac{d \sigma}{d t}(\gamma d \rightarrow p n)}
$$

Ratio predicted to approach 2:5

Possible contribution from pion charge exchange at small t.
Ratio should grow with transverse momentum as the hidden color component of the deuteron grows in strength.

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 182

Stan Brodsky
SLAC

Key Experiment at GSI FAIR

Test QCD scaling in hard exclusive nuclear amplitudes

> Manifestations of Hidden Color in Deuteron Wavefunction

$$
\bar{p} d \rightarrow \pi^{-} p
$$

Ratio predicted to approach 2:5

$$
\bar{p} d \rightarrow \pi^{-} \Delta^{+}
$$

Conformal Scaling, AdS/CFT

$$
\frac{d \sigma}{d t}\left(\bar{p} d \rightarrow \pi^{-} p\right)=\frac{F\left(\theta_{c m}\right)}{s^{12}}
$$

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
183

Stan Brodsky
SLAC

Topics for FAIR in Exclusive Processes

QCD at the Amplitude Level

- Measures of LFWFs, distribution amplitudes, transition distribution amplitudes
- Scaling of Fixed-Angle Amplitudes tests conformal window of QCD
- Quark-Interchange Dominance at large p_{T}
- Crossing and Analyticity $\bar{p} p \rightarrow \gamma \pi$ vs. $\gamma p \rightarrow \pi p$
- Timelike GPDs from DVCS $\bar{p} p \rightarrow \gamma * \gamma$, charge and spin asymmetry, $J=0$ Local seagull-like Interactions
- Transition to Regge theory at forward and backward angles
- Regge poles $\alpha_{R}(t) \rightarrow-1,-2$ at large $-t$.
- Charm and Charmonium at Threshold
- Odderon Tests
- Second Charm Threshold $\bar{p} p \rightarrow \bar{p} p J / \psi$
- Diffractive Drell-Yan $\bar{p} p \rightarrow \bar{\ell} \ell J / \psi$
- Exclusive $A_{N}, A_{N N}$, especially at strange and charm thresholds
- Color Transparency
- Hidden Color of Nuclear Wavefunctions in $\bar{p} d$ reactions
- Exotic $\bar{q} \bar{q} q q$ and gluonium Spectra in $p \bar{p} \rightarrow \gamma M_{X}$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
184

Stan Brodsky
SLAC

Topics for FAIR in Di-Muon Production

- Direct Higher Twist Processes
- Single-Spin Asymmetry
- Double Spin Correlation: Transversity
- Lam-Tung Violation in Continuum and J/Psi Production: Double ISI
- Role of quark-quark scattering plus bremsstrahlung: color dipole approach
- Double Drell-Yan: Glauber vs Handbag
- Associated System - Tetraquark and Gluonium States

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 185

Stan Brodsky
SLAC

Heavy Quark Topics for FAIR

- Mechanisms for Heavy Hadron and Quarkonium Production Near Threshold
- Tests of Intrinsic Charm
- Quarkonium Attenuation at High xF
- Non-Universal Anti-Shadowing
- Although we know the QCD Lagrangian, we have only begun to understand its remarkable properties and features.
- Novel QCD Phenomena: hidden color, color transparency, strangeness asymmetry, intrinsic charm, anomalous heavy quark phenomena, anomalous spin effects, single-spin asymmetries, odderon, diffractive deep inelastic scattering, dangling gluons, shadowing, antishadowing ...

> Truth is stranger than fiction, but it is because Fiction is obliged to stick to possibilities. -Mark Twain

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 187

Stan Brodsky
SLAC

Thanks to Díego Bettoní

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
188

Stan Brodsky
SLAC

Some references

Testing quantum chromodynamics with antiprotons. Stanley J. Brodsky (SLAC) . SLAC-PUB-10811, Oct 2004. 92pp.

Published in *Varenna 2004, Hadron physics* 345-422
e-Print Archive: hep-ph/0411046

Light-front QCD.
Stanley J. Brodsky (SLAC) . SLAC-PUB-10871, Nov 2004. 66pp.
Invited lectures and talk presented at the 58th Scottish University Summer School in Physics: A NATO Advanced Study Institute and EU Hadronic Physics 13 Summer Institute (SUSSP58), St. Andrews, Scotland, 30 Aug-1 Sep 2004.
e-Print Archive: hep-ph/0412101

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
189

Stan Brodsky
SLAC

