Absolute H -jet polarimeter at RHIC.

Anatoli Zelenski
Brookhaven National Laboratory,
Upton, NY

July 1, 2008, Ferrara University

Polarization facilities at RHIC.

Design goal - 70\% Polarization $L_{\max }=1.6 \times 10^{32} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \quad 50<\sqrt{ } s<$ 500 GeV

A_{N} for Coulomb -Nuclear Interference.

the left - right scattering asymmetry A_{N} arises from the interference of the spin non-flip amplitude with the spin flip amplitude (Schwinger)

$$
\begin{aligned}
& A_{N}=C_{1} \operatorname{Im}\left(\phi_{f l i p}^{e m}{ }^{*} \phi_{\text {non-flip }}^{\text {had }}\right)+C_{2} \\
& \propto(\mu-1)_{\mathrm{p}} \quad \propto \sqrt{\sigma^{p p}} \\
& \text { in absence of hadronic spin - flip contributions } \\
& \mathrm{A}_{\mathrm{N}} \text { is exactly calculable (Kopeliovich \& Lapidus) } \\
& A_{N}=\sqrt{\frac{8 \pi Z \alpha}{m_{p}^{2} \sigma_{\text {tot }}^{p A}} \frac{y^{3 / 2}}{1+y^{2}}(\mu-1) \quad y=\frac{\sigma_{t o t}^{p A} t}{8 \pi Z \alpha}}
\end{aligned}
$$

hadronic spin- flip modifies the QED "predictions"

$$
\frac{\mu_{p}-1}{2} \rightarrow \frac{\mu_{p}-1}{2}-I_{5}+\left(\frac{\mu_{p}-1}{2} I_{2}\right)
$$

interpreted in terms of Pomeron spin - flip

$$
\begin{aligned}
& \text { Pomeron spin - flip } \\
& \text { and parametrized as } \phi_{5}^{\text {had }}=\tau(s) \frac{\sqrt{-t}}{m_{p}} \phi_{0}^{\text {had }}
\end{aligned}
$$

AGS and RHIC polarimeter complex

P-Carbon CNI polarimeter.

Elastic scattering: interference between electromagnetic and hadronic amplitudes in the Coulumb-Nuclear Interference (CNI) region

$$
\begin{aligned}
& P_{\text {beam }}=-\frac{\varepsilon_{N}}{A_{N}^{p C}} \\
& \varepsilon_{N}=\frac{N_{L}-N_{R}}{N_{L}+N_{R}}
\end{aligned}
$$

P-Carbon analyzing power: A_{N}

Elastic scattering: interference between electromagnetic and hadronic amplitudes in the Coulumb-Nuclear Interference (CNI) region.

$$
A_{N} \approx C_{1} \phi_{\text {flip }}^{e e^{*}} \phi_{\text {non-flip }}^{\text {had }}+C_{2} \phi_{\text {non-flip }}^{e m}{ }^{*} \phi_{\text {flip }}^{\text {had }}
$$

Phys.Rev.Lett.,89,052302(2002)

$$
E_{\text {beam }}=21.7 \mathrm{GeV}
$$

unpublished
$E_{\text {beam }}=100 \mathrm{GeV}$

Detector Setup

Hydrogen Gas Jet and Carbon Wire Targets

H-Jet polarimeter

Elastic scattering: Interference between electromagnetic and hadronic amplitudes in the Coulumb-Nuclear Interference (CNI) region

Beam and target are both protons

$$
A_{N} \approx \operatorname{Im}\left(\phi_{S F}^{e m} \phi_{N F}^{h a d}+\phi_{S F}^{h a d^{*}} \phi_{N F}^{e m}\right) /\left|\phi_{N F}^{h a d}\right|^{2}
$$

Forward scattered proton
recoil proton

$$
\frac{\Delta \mathrm{P}_{\text {beam }}}{\mathrm{P}_{\text {beam }}} \approx \frac{\Delta \mathrm{P}_{\text {target }}}{\mathrm{P}_{\text {target }}} \oplus \frac{\Delta \varepsilon_{\text {target }}}{\varepsilon_{\text {target }}} \oplus \frac{\Delta \varepsilon_{\text {beam }}}{\varepsilon_{\text {beam }}}<5 \%
$$

$P_{\text {target }}$ is measured by Breit- Rabi Polarimeter

Kinematics.

$|t|: 0.001-0.02 \mathrm{GeV}^{2}$
$\vartheta_{\mathrm{R}}: 1-5$ degrees
$\mathrm{T}_{\text {kin }}: 0.5-10 \mathrm{MeV}$
$\mathrm{p}_{\mathrm{R}}: 30-140 \mathrm{MeV} / \mathrm{c}$
tof : 100-20 nsec (@ 1m) elastic $p p$ kinematics fully constrained by recoil proton only !

$$
\begin{aligned}
\sin \vartheta_{R} & \approx\left(1+\frac{m_{p}}{p_{\text {beam }}}\right) \frac{\sqrt{|t|}}{2 m_{p}} \\
\text { measure position and energy of recoil } \Rightarrow & =-2 m_{p} T_{k i n}
\end{aligned}
$$

$$
t o f \approx 1 / \sqrt{2 T_{\text {kin }} / m_{p}} \cdot D \Rightarrow \text { additional kinematical constraint }
$$

$$
\vartheta_{\mathrm{R}} \& \mathrm{E}_{\mathrm{R}} \Rightarrow \mathrm{~m}_{\text {beam }}\left(\mathrm{M}_{\mathrm{X}}\right) ; \text { tof } \& \mathrm{E}_{\mathrm{R}} \Rightarrow \mathrm{~m}_{\text {target }}
$$

Polarization measurements in RHIC with the H -jet polarimeter.

H-jet polarimeter.

- The H-jet polarimeter includes three major parts: polarized Atomic Beam source (ABS), scattering chamber, and Breit-Rabi polarimeter.
- The polarimeter axis is vertical and the recoil protons are detected in the horizontal plane.
- The common vacuum system is assembled from nine identical vacuum chambers, which provide nine stages of differential pumping.
- The system building bloc k is a cylindrical vacuum chamber 50 cm in diameter and of 32 cm length with the four $20 \mathrm{~cm}\left(8.0^{\prime \prime}\right)$ ID pumping ports.

H-jet polarimeter can be moved and installed into the RHIC ring in one day.

The power supply and control system is assembled in seven joint racks on the wheels.

The absolute proton polarimeter.

Polarized Hydrogen G as Jet Target

$$
\begin{aligned}
& \text { thickness of }>10^{12} \mathrm{p} / \mathrm{cm}^{2} \\
& \text { polarization }>93-94 \%!
\end{aligned}
$$

S ilicon recoil spectrometer:

Measure $\mathrm{A}_{\mathrm{N}}{ }^{p p}$ in pp elastic scattering in the CNI region to $\Delta \mathrm{A}_{\mathrm{N}}<10^{-3}$ accuracy.

Initially (2004) measure P_{B} to 10%.
H-Jet at the IP-12

H-jet layout at the IP-12.

H-JET POLARIMETER SCATTERING CHAMBER.

H-Jet: Identification of Elastic Events

Array of Si detectors measures $\mathbf{T}_{\mathrm{R}} \& \mathbf{T o F}$ of recoil proton.
Channel \# corresponds to recoil angle $\boldsymbol{\theta}_{\mathrm{R}}$.
Correlations $\left(T_{R} \& T o F\right)$ and $\left(T_{R} \& \theta_{R}\right) \rightarrow$ the elastic process

H-Jet polarimeter: A_{N} in $p p$

$$
\left.A_{N} \approx \operatorname{Im}\left(\phi_{S F}^{e m} \phi_{N F}^{\text {had }}+\oint_{S F}^{\text {had* }} \phi_{N F}^{e m}\right)\right\rangle\left|\phi_{N F}^{\text {had }}\right|^{2}
$$

100 GeV : calculations with no hadronic spin flip amplitude contribution are consistent with data

24 GeV : calculations with no hadronic spin flip amplitude contribution are not consistent with data
More data to come:
24 GeV : take more data in Run9/10
31 GeV : finalize analysis of data from Run 250 GeV : take data in Run9/10

$$
A_{N}^{p p}=\frac{\varepsilon_{\mathrm{target}}}{P_{\mathrm{target}}}
$$

H-Jet polarimeter operation.

HJet performance is very stable through the Years.
Background is small and doesn't change from Year to Year, for Blue and Yellow
\Rightarrow Beam polarization is measured reliably by H -Jet

Kieran Boyle
RSC Meeting - November 15, 2007

pC: Polarization vs Fill \#. Run 2006

Polarization vs fill

Polarization vs fill
 \checkmark Normalized to Hjet \checkmark Corrected for polarization profile

$$
\frac{\delta P_{B}}{P_{B}}=4.7 \% \quad \frac{\delta P_{Y}}{P_{Y}}=4.8 \%
$$

H-jet is an ideal polarimeter!

- High ($\sim 4.5 \%$) analyzing power in a wide energy range (23-250 GeV).
- High event rate due to high intensity ($\sim 100 \mathrm{~mA}$) circulated beam current in the storage ring ($\sim 6 \%$ statistical accuracy in one
8hrs. long fill). High polarized H-jet density in RHIC ABS.
- Non-destructive.
- No scattering for recoil protons.
- Clean elastic scattering event identification.
- Straightforward calibration with Breit-Rabi polarimeter.
- Most of the false asymmetries are cancelled out in the ratio:

$$
P_{\text {beam }}=(I / A) \text { Beam }{ }_{\text {asym }} / \text { Target }_{\text {asym }}
$$

Problem.
Polarization dilution by $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$ and other residual gases.
Largest source of systematic error.

H - jet polarimeter.

Dissociator

Heat transfer from quartz tube to the copper heatsink.

- Finger springs, 2003-04
- Apiezon greaze, 2004-05-high intensity, reproducibility problem.
- Indium wire, 2005-2008, stable operation (crashed Diam. 14 X 1 mm tube).

Simulations of the 6-pole separating magnet system.

H-jet sextupole separation magnet system.

24 sectors separating magnets with 1.5 T field
at the pole tips.

- Force on the atom:

$$
\vec{F}=-\nabla E=-\frac{\partial E}{\partial B} \cdot \frac{\partial B}{\partial r} \vec{e}_{r}=-\mu_{e f f} \cdot B_{0} \frac{r}{2 r_{0}^{2} \vec{e}_{r}}
$$

Atomic beam profile at the collision point.

- Atomic beam profile was measured with a 2.0 mm in diameter compression tube FWHM $=5.0 \mathrm{~mm}$
- 5 cm upstream the beam profile FWHM is about 4.5 mm and 120 mm downstream FWHM is about 7.0 mm
- In assumption, that beam velocity is $2 \cdot 10^{5} \mathrm{~cm} / \mathrm{s}$, the $\mathrm{H}-$ jet thidness at the collision point is about $1.2 \cdot 10^{12}$ atoms $/ \mathrm{cm}^{2}$.

Atomic beam intensity profile measurements.

Beam profile at the entrance of 6-pole \# 5.

Beam profile at the RHIC beam collision point.

H-jet target intensity profile at the RHIC collision point.

Profile was measured from elastic pp scattering events.
 Hor. position of the JET ,10000 steps $=2.5 \mathrm{~mm}$.

Atomic Beam intensity

 measurement, June 2003

Compression tube calibration.

- Hydrogen mass-flow controller MKS . Full range: $0.0-1.0 \mathrm{scc} / \mathrm{min}$. Absolute accuracy 1-2 \%.
Conventional technique: pressure drop in calibrated volume.
Independent AB intensity measurement from the well known TMP pumping speed.

$$
\text { Ø - } 10 \mathrm{~mm} .
$$

L ength-10
cm

The compression tube calibration system for the absolute $A B$ intensity measurements.

H 2 mass-flow controller and a pressure drop measurement in the calibrated volume were used for compression tube calibration.

Atomic beam intensity vs H_{2} flow in dissociator.
$A B$ intensity of
$12.5 \cdot 10^{16} \mathrm{at} / \mathrm{s}$. was measured at
$70 \mathrm{scc} / \mathrm{s} \mathrm{H}_{2}$ flow.
250 W RF power
75 K nozzle temp.

$A B$ intensity vs. nozzle temperature.

The maximum AB intensity was measured at
$T_{\text {nozzle }}=75$ deg. K

"Optimal " radio-frequency dependence on the H_{2} flow in dissociator.

Atomic beam intensity vs H_{2} flow in dissociator.

RF-power was kept constant at 260 W

Nozzle temperature 75 K .

Slope is 1.75 steeper than
simulations

Operational atomic beam sources intensities.

Polarization dilution by H_{2}, $\mathrm{H}_{2} \mathrm{O}$
 and other residual gases.

"RIBEN" QMA upgrade for H-jet measurements.

Original QMA geometry (right)
Expanded QMA sensitive volume (left)

Atomic beam intensity and density measurements in the collision region.

- H-beam intensity and density vs. H2 flow in dissociator.

Layout of the electron beam ionizer and magnetic ion analyzer in the collision chamber.

Ion spectra measured with the new diagnostic device.

Cross-section ratio $\mathrm{H}_{2} / \mathrm{H} \sim 15$ at 600 eV electron beam energy.

Breit-Rabi polarimeter.

- About 30 \% of the AB is transported to the BRP detector.
- Detector is an Ion gauge. Signal was amplified and converted to Frequency.
- Then gates and scalers were used for state selection. Gates were
synchronized with the chopper wheel.
- The RFT flipped the spin every 500 s.
- Both transition "on" state for 50 s is used for transition stability monitoring.

The use of efficient BRP allowed RFT tuning and stable operation at 99.8\% efficiency.

Atomic beam trajectories in BRP with both SFT and WFT -transitions are "on".

RF-transition operation. Atomic beam polarization reversal.

Turn-on time for SF-transition.

H-Jet: $P_{\text {target }}$

Source of normalization for polarization measurements at RHIC

Polarization cycle:
(+/ 0/ -) = (500/50/500) seconds
Very stable for entire run period!

Nuclear polarization of the atoms measured by BRP: $95.8 \% \pm 0.1 \%$

Correct for $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$ contamination.

$$
\begin{aligned}
& P_{\text {target }}=92.4 \% \pm \\
& 1.8 \%
\end{aligned}
$$

Atomic beam polarization measurements during H-jet operation in May, 2004-run.

Day	mag.field	avg.rates +	avg.rates	avg.rates 0	Pol.+	Pol:-
April 26	normal	10490 ± 1	10436 ± 1	56.9 ± 0.2	+95.70	-95.91
April 27	normal	10526 ± 0.4	10469 ± 0.4	55.9 ± 0.1	+95.69	-95.93
April 28	normal	10180 ± 1	10134 ± 1	54.1 ± 0.2	+95.73	-95.89
April 29	normal	9716 ± 1	9656 ± 1	51.5 ± 0.1	+95.66	-95.97
April 30	normal	10056 ± 0.8	9999.6 ± 0.8	50.7 ± 0.1	+95.70	-95.96
May 1	normal	10169 ± 0.3	10119 ± 0.3	50.7 ± 0.1	+95.73	-95.92
May 2	normal	10345 ± 0.5	10288 ± 0.5	53.0 ± 0.1	+95.70	-95.96
May 4	reversed	9251.5 ± 0.5	9232.0 ± 0.5	54.3 ± 0.1	+95.82	-95.74
May 5	reversed	10602 ± 0.7	10568 ± 0.7	55.7 ± 0.1	+95.80	-95.82
May 5	normal	10791 ± 0.6	10755 ± 0.6	51.5 ± 0.1	+95.81	-95.85
May 6	normal	8388.8 ± 0.5	8355.4 ± 0.5	39.9 ± 1	+95.78	-95.89
May 7		8971.3 ± 0.6		40.2 ± 0.1		?
(8am to 4 pm , instable behaviour of SFT, data may not be used)						
Used	fference	8971.3 ± 0.6	8897.1 ± 0.6	74.2 ± 0.1	+95.42	-95.93
May 7	normal	9141.5 ± 0.5	9110.3 ± 0.5	47.6 ± 0.1	+95.79	-95.84
(after 4pm, stable behaviour SFT, everything OK)						
May 8	normal	9394.1 ± 0.5	9350.9 ± 0.5	47.2 ± 1	+95.74	-95.91
May 9	norma	9205.3 ± 0.5	9171.4 ± 0.5	47.1 ± 0.1	+95.78	-95.86
May 10	normal	9677.0 ± 0.4	9635.5 ± 0.4	47.6 ± 0.1	$+95.76$	-95.90
May 11	normal	10133 ± 0.4	10084 ± 0.4	46.4 ± 0.1	+95.75	-95.94
(don't use date between 12:00 and 16:30 since there were 2 programs running)						
May 12	normal	10435 ± 0.4	10390 ± 0.4	47.6 ± 0.1	+95.78	-95.91
May 13	normal	10838 ± 0.4	10791 ± 0.4	48.1 ± 0.1	+95.78	-95.92
May 14	normal	11196 ± 0.6	11151 ± 0.6	49.1 ± 0.1	+95.80	-95.90

Time -of - flight beam velocity and velocity spread measurements out of dissociator

The narrow velocity spread is expected from the H -jet dissociator (due to long cooling "neck"), which can be a significant factor in the superior H -jet performance.

Beam chopper

AB S separating magnets were removed for these measurements.

QMA atomic beam velocity measurements.

L=135 cm - drift length.

$\mathrm{Vb} \sim 1500-1800 \mathrm{~m} / \mathrm{s}$

RHIC H-jet beam profile imaging system

dissociator spectrum

Jet spectrum

RHIC Run-8 p-p H-jet camera
Feb 1-20, 2008

March 72008 H-jet spectrum

log intensity scale
H-jet spectrum contains only atomic hydrogen, no other impurities observed

March 72008 H-jet spectrum

Feb. 19, 2008 RHIC run-8 pp blue beam profile

 656 nm red filter - H_{α}

FWHM $(x)=4.0 \mathrm{~mm}$ $\sigma(x)=1.7 \mathrm{~mm}$
$\left.\begin{array}{rl}\text { FWHM }(x) & =5.6 \mathrm{~mm} \\ \sigma(x) & =2.4 \mathrm{~mm}\end{array}\right\}$ H-jet

Beam \#191
109 bunches
Fill \# 9906
5.8×10^{6} photons/sec on CCD
(~ 1.8 picoWatt)

$$
\begin{array}{r}
\sigma(y)=0.48 \mathrm{~mm} \rightarrow 14.2 \mathrm{pi} \\
\text { IPM }-12.0 \mathrm{pi}
\end{array}
$$

Normalized signal

RHIC proton beam FWHM (y) = $\mathbf{1 . 1 5}$ mm

March 82008 H-jet spectrum

March 9, 2008, 1:44 pm beam \#390, fill \#10000, p-p 135 bunches H-jet ON, 656 nm filter

proton beam size
Yellow beam $1.50 \mathrm{~mm}(F W H M), \sigma=0.64 \mathrm{~mm}$
Blue beam $1.68 \mathrm{~mm}(F W H M), \sigma=0.71 \mathrm{~mm}$ Yellow-blue separation: 3.36 mm

Pol' H-Jet on CERN COURIER Oct. 2005!

courierhttp://www.cerncourier.com/main/article/45/8/15

This Issue | Back Issues | Editorial Staff

www.iop.org

Site Overview
Latest issue
Special Issues
CNL
Archive
Buyer's Guide
Subscribe
Jobs Watch

Advertising
Feedback
Contacts

Resources
Search

Polarized Protons

H-jet measures beam polarization at RHIC

The RHIC accelerator collides 100 GeV polarized protons head-on to study the contribution of gluons to the proton spin. But how is the degree of polarization of the beam known? Willy Haeberli explains.

Résumé

Jet de H pour mesurer la polarisation du faisceau au RHIC
L'ensemble d'accélérateurs RHIC de Brookhaven produit des colisions frontales entre des protons polarisés de 100 GeV afin d'étudier ie rôle des gluons dans le spin du proton. Mais comment déterminer le degré de polarisation du faisceau? C'est très simple en théorie, mais très compliqué en pratique: on mesure la diffusion des particules d'un faisceau frappant une cible d'atomes d'hydrogène dont on connail la polarisation.

The Relativistic Heaw Ion Collider (RHIC) at Brookhaven National Laboratory is unique. In addition to accelerating heaw ions, it also accelerates spin-polarized protons to high energies and enables the study of collisions between polarized protons with centre-of-mass energies up to 500 GeV .

A_{N} at Coulomb Nuclear Interference (CNI) Region

