Università Degli Studi di Ferrara

Dottorato di ricerca in Fisica ciclo XXI

Internal polarized gas targets: systematic studies on intensity and correlated effects

Settore scientifico disciplinare FIS/01

24/03/2009

Luca Barion

- stored intense p polarized beam in HESR (15 Gev/c)
 stored intense p polarized beam in CSP (2.5 Co)//c)
- stored intense \overline{p} polarized beam in CSR (3.5 GeV/c)

Antiproton polarization

• ABS -> not possible

- Stern-Gerlach -> never tried
- Channeling -> never tested

Spin filtering Tested in FILTEX in 1992 (p)

Figure Of Merit (for polarization)

 $FOM(t) = P(T)^2 \cdot I(T)$

P antiproton beam polarizationI antiproton beam intensityT time

Optimum filtering time:

 $T_0 = 2 \tau_B (\tau_B \text{ beam lifetime, time to reduce beam intensity to } I_0/e)$

Beam lifetime depends on target thickness (present target thickness $t=10^{14}$ at/cm²)

→ Increase in target density is desirable (to decrease filtering time)

ABS intensity

Modification to storage cell

Effects of modified storage cell

Thickness of gaseous target:

$$t = \frac{IL}{C_{tot}} \left[\frac{at}{cm^2} \right]$$
$$C_{tot} = 2C_{beam} + C_{inj} \quad [cm^3/s]$$

I intensity of beam to the cell [at/s] L beam tube half length M molec/at gas mass

W. Haeberli, E. Steffens, Rep. Prog. Phys. 66 p 1887 (2003)

$$C = \frac{8}{3\sqrt{\pi}} \left(2 k_B \frac{T}{M} \right)^{1/2} \left(\frac{A^2}{\mathbf{s} L} \right)$$

Vacuum Technology - Roth A (1990)

Test stand (ABS2)

Relative conductance (meas + fit)

Intensity decrease larger than expected

First evidence of azimuthal velocity component of the atomic beam

Intensity drop (I/I₀) is bigger than expected: necessary to consider **azimuthal component** of atoms velocity (new!)

Calculations with surfaces of area 2 - 3 - 4 mm used as "starting generator surface"

Match with 2mm (like nozzle) z_{sgs} independent for 0-30 mm

Nuclear Instruments and Methods in Physics Research A 594 (2008) 126-131

SCAN (sextupole tracking software)

Rest Gas Attenuation measurements on H/D beams

Intensity of world ABS

24/03/2009

ABS beam intensity (how to increase it)

Luca Barion - Esame dottorato

Interaction beam - rest gas

24/03/

Attenuation coefficient as function of T_{nozzle} (standard in literature)

Attenuation coefficient as function of Beam velocity (NEW!) (Molecular Hydrogen beam)

Attenuation coefficient as function of Beam velocity (Molecular Deuterium beam)

Attenuation coefficient as function of Beam velocity (Atomic Hydrogen and Deuterium)

(Publication in preparation)

Atomic beam attenuation in ABS1 Input beam

> In ABS1 at standard operating conditions > 45% of atomic beam is lost due to rest gas attenuation in Chamber 2

Nozzle #3 (sonic)

Nozzle #4 (trumpet)

Monte Carlo simulation (ds2g by Bird) => improvement of beam intensity

Measured beam intensity through skimmer (Chamber 2 used as Compression Volume)

Measured beam intensit in the Compression Volume

Luca Barion - Esame dottorato

Measured beam intensity in the Compression Volume

Summary

- Finned injection tube (published)
 - Not useful for PAX but maybe useful for other geometries
 - Azimuthal velocity component
 - Appropriate Starting surface for our apparatus
- Rest Gas Attenuation (publication in preparation)
 - Attenuation coefficients useful for calculations (independent from experimental setup)
- Trumpet nozzle (publication in preparation)
 - Simulations and measurements foresee beam intensity increase