
Novel  Electromagnetic and QCD Physics at FAIR
and New Insights from AdS/QCD

Stan Brodsky, SLAC

Ferrara  Workshop on Electromagnetic Interactions at FAIR  
October 15-16, 2007

1



FAIR Workshop 
October 15-16, 2007

Novel Anti-Proton QCD Physics  Stan Brodsky
  SLAC

Panda PAX

2
2



FAIR Workshop 
October 15-16, 2007

Novel Anti-Proton QCD Physics  Stan Brodsky
  SLAC3

B. Seitz - Dept. of Physics & Astronomy - University of Glasgow

The anti-proton beam
• Parallel operation for large 

physics programme

• FAIR will provide cooled anti-
proton beams from 
0 -15 GeV/c

• HESR: Np = 5x1010

1.5 GeV/c < pbeam < 15 GeV/c

• High luminosity mode
!p/p =10-4 with stochastic 
cooling, L=1032cm-2s-1

• High precision mode
!p/p =3x10-5 with electron 
cooling, L=1031cm-2s-1

B. Seitz
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from RESR

High Energy Storage Ring

Storage ring for p:
 Np = 5×1010, Pbeam= 1.5-15 GeV/c;

High density target:
 pellet 1015 atoms/cm3, cluster jet, wire;

High luminosity mode:
 Δp/p = 10-4, stochastic cooling,          

L = 1032 cm-2s-1;

High precision mode:
 Δp/p = 3×10-5, electron cooling,         

L = 1031 cm-2s-1.
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The PANDA Detector

Electromagnetic Calorimeter

Muon detectors
DIRC detectors
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The core program of PANDAThe core program of PANDA
Mass range of PANDAMass range of PANDA
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Search for exotic statesSearch for exotic states
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Why antiprotons?Why antiprotons?
Merits of antiprotons in Merits of antiprotons in hadronhadron spectroscopyspectroscopy
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CharmoniumCharmonium –– the the PositroniumPositronium of QCDof QCD
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Merits of antiprotons in Merits of antiprotons in hadronhadron spectroscopyspectroscopy

High Resolution of M and High Resolution of M and !!
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New Charmonium Resonances

 X(3872), Belle 09’2003, 1++, χc1´ or D0D* molecule
 decays into   J/ψπ+π-, J/ψπ+π-π0, J/ψγ, D0D*

 Y(3940), Belle 09’2004, JP+, 23P1 or Hybrid??
 decays into  J/ψω

 Y(4260), BaBar 06’2005, 1--, 23D1 (BaBar) or 43S1 (CLEO) or Hybrid
 decays into e+e-, J/ψπ+π-, J/ψπ0π0, J/ψK+K-

 X(3943), Belle 07’2005, 0-+, ηc´´
 decays into D0D*

 Z(3934), Belle 07’2005, 2++, χc2´
 decays into γγ, DD

 ψ(4320), BaBar 06’2006, ?, Hybrid
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The Drell-Yan process
• process complementary to 

DIS

• cross section directly 
related to parton 
distribution functions

• no fragmentation functions 
involved

• all valence quarks will 
contribute in anti-proton 
annihilation

• wealth of (spin)-observables

1

σ

dσ

dΩ
∝ ν

2
sin2θcos2φ

ν ∝
∑

q

e2
q
h⊥1 h̄⊥1
f1 f̄1

ATT ∝
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q e2
q

(
h1h̄1

)
∑

q e2
q

(
f1 f̄1

)

B. Seitz

12



Andrey Sokolov

Elementary LO interaction:

3 planes:  plane ┴ polarization vectors,
p-γ* plane,  µ+µ- γ* plane

many spin effects
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Drell-Yan angular distribution

• Experimentally, a violation of the 
Lam-Tung sum rule is observed by 
sizeable cos2! moments

• Several model explanations

• higher twist

• spin correlation due to non-trival 
QCD vacuum

• Non-zero Boer Mulders function

1

σ

dσ

dΩ
=

3

4π

1

λ + 3

(
1 + λcos2θ + µsin2θcosφ +

ν

2
sin2θcos2φ

)

NLO pQCD : λ ≈ 1 µ ≈ 0 ν ≈ 0

experiment : ν ≈ 0.3

Lam− Tung SR : 1− λ = 2ν

B. Seitz

Unpolarized DY
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Measurement of Angular Distributions of Drell-Yan Dimuons in p + d Interaction at
800 GeV/c
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We report a measurement of the angular distributions of Drell-Yan dimuons produced using an
800 GeV/c proton beam on a deuterium target. The muon angular distributions in polar angle
θ and azimuthal angle φ have been measured over the kinematic range 4.5 < mµµ < 15 GeV/c2,
0 < pT < 4 GeV/c, and 0 < xF < 0.8. No significant cos2φ dependence is found in these proton-
induced Drell-Yan data, in contrast to the situation for pion-induced Drell-Yan. The data are
compared with expectations from models which attribute the cos2φ distribution to a QCD vacuum
effect or to the presence of the transverse-momentum-dependent Boer-Mulders structure function
h⊥

1 . Constraints on the magnitude of the sea-quark h⊥
1 structure functions are obtained.

PACS numbers: 13.85.Qk, 14.20.Dh, 24.85.+p, 13.88.+e

The Drell-Yan process [1], in which a charged lepton
pair is produced in a high-energy hadron-hadron interac-
tion via the qq̄ → l+l− process, has been a testing ground
for perturbative QCD and a unique tool for probing par-
ton distributions of hadrons. The Drell-Yan production
cross sections can be well described by next-to-leading
order QCD calculations [2]. This provides a firm theo-
retical framework for using the Drell-Yan process to de-
termine the antiquark content of nucleons and nuclei [3],
as well as the quark distributions of pions, kaons, and
antiprotons [4].

Despite the success of perturbative QCD in describing
the Drell-Yan cross sections, it remains a challenge to un-
derstand the angular distributions of the Drell-Yan pro-
cess. Assuming dominance of the single-photon process,
a general expression for the Drell-Yan angular distribu-
tion is [5]

dσ

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ, (1)

where θ and φ denote the polar and azimuthal angle,
respectively, of the l+ in the dilepton rest frame. In
the “naive” Drell-Yan model, where the transverse mo-

mentum of the quark is ignored and no gluon emission
is considered, λ = 1 and µ = ν = 0 are obtained.
QCD effects [6] and non-zero intrinsic transverse mo-
mentum of the quarks [7] can both lead to λ #= 1 and
µ, ν #= 0. However, λ and ν should still satisfy the rela-
tion 1 − λ = 2ν [5]. This so-called Lam-Tung relation,
obtained as a consequence of the spin-1/2 nature of the
quarks, is analogous to the Callan-Gross relation [8] in
Deep-Inelastic Scattering. While QCD effects can signif-
icantly modify the Callan-Gross relation, the Lam-Tung
relation is predicted to be largely unaffected by QCD
corrections [9].

The first measurement of the Drell-Yan angular dis-
tribution was performed by the NA10 Collaboration for
π− + W at 140, 194, and 286 GeV/c, with the highest
statistics at 194 GeV/c [10]. The cos 2φ angular depen-
dences showed a sizable ν, increasing with dimuon trans-
verse momentum (pT ) and reaching a value of ≈ 0.3 at
pT = 2.5 GeV/c (see Fig. 1). The observed behavior of ν
could not be described by perturbative QCD calculations
which predict much smaller values of ν [6]. The Fermilab
E615 Collaboration subsequently performed a measure-
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The Drell-Yan process [1], in which a charged lepton
pair is produced in a high-energy hadron-hadron interac-
tion via the qq̄ → l+l− process, has been a testing ground
for perturbative QCD and a unique tool for probing par-
ton distributions of hadrons. The Drell-Yan production
cross sections can be well described by next-to-leading
order QCD calculations [2]. This provides a firm theo-
retical framework for using the Drell-Yan process to de-
termine the antiquark content of nucleons and nuclei [3],
as well as the quark distributions of pions, kaons, and
antiprotons [4].

Despite the success of perturbative QCD in describing
the Drell-Yan cross sections, it remains a challenge to un-
derstand the angular distributions of the Drell-Yan pro-
cess. Assuming dominance of the single-photon process,
a general expression for the Drell-Yan angular distribu-
tion is [5]

dσ

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ, (1)

where θ and φ denote the polar and azimuthal angle,
respectively, of the l+ in the dilepton rest frame. In
the “naive” Drell-Yan model, where the transverse mo-

mentum of the quark is ignored and no gluon emission
is considered, λ = 1 and µ = ν = 0 are obtained.
QCD effects [6] and non-zero intrinsic transverse mo-
mentum of the quarks [7] can both lead to λ #= 1 and
µ, ν #= 0. However, λ and ν should still satisfy the rela-
tion 1 − λ = 2ν [5]. This so-called Lam-Tung relation,
obtained as a consequence of the spin-1/2 nature of the
quarks, is analogous to the Callan-Gross relation [8] in
Deep-Inelastic Scattering. While QCD effects can signif-
icantly modify the Callan-Gross relation, the Lam-Tung
relation is predicted to be largely unaffected by QCD
corrections [9].

The first measurement of the Drell-Yan angular dis-
tribution was performed by the NA10 Collaboration for
π− + W at 140, 194, and 286 GeV/c, with the highest
statistics at 194 GeV/c [10]. The cos 2φ angular depen-
dences showed a sizable ν, increasing with dimuon trans-
verse momentum (pT ) and reaching a value of ≈ 0.3 at
pT = 2.5 GeV/c (see Fig. 1). The observed behavior of ν
could not be described by perturbative QCD calculations
which predict much smaller values of ν [6]. The Fermilab
E615 Collaboration subsequently performed a measure-
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TABLE I: Mean values of the λ, µ, ν parameters and the quan-
tity 2ν − (1 − λ) for three Drell-Yan measurements. The pT

dependence of these quantities is shown in Fig. 1.

p + d π− + W π− + W

800 GeV/c 194 GeV/c 252 GeV/c

(E866) (NA10) (E615)

〈λ〉 1.07 ± 0.07 0.83 ± 0.04 1.17 ± 0.06

〈µ〉 0.003 ± 0.013 0.008 ± 0.010 0.09 ± 0.02

〈ν〉 0.027 ± 0.010 0.091 ± 0.009 0.169 ± 0.019

〈2ν − (1 − λ)〉 0.12 ± 0.07 0.01 ± 0.04 0.51 ± 0.07

Several settings of the currents in the three dipole mag-
nets (SM0, SM12, SM3) were used in order to optimize
acceptance for different dimuon mass regions. Data col-
lected with the “low mass” and “high mass” settings [26]
on liquid deuterium and empty targets were used in this
analysis. The detector system consisted of four track-
ing stations and a momentum analyzing magnet (SM3).
Tracks reconstructed by the drift chambers were extrapo-
lated to the target using the momentum determined from
the bend angle in SM3. The target position was used to
refine the parameters of each muon track.

From the momenta of the µ+ and µ−, kinematic vari-
ables of the dimuons (xF , mµµ, pT ) were readily recon-
structed. The muon angles θ and φ in the Collins-Soper
frame [27] were also calculated. To remove the quarko-
nium background, only events with 4.5 < mµµ < 9
GeV/c2 or mµµ > 10.7 GeV/c2 were analyzed. A total
of 118,000 p + d Drell-Yan events covering the decay an-
gular range −0.5 < cos θ < 0.5 and −π < φ < π remain.
Detailed Monte-Carlo simulations for the experiment us-
ing the MRST98 parton distribution functions [28] for
NLO Drell-Yan cross sections have shown good agree-
ments with the data for a variety of measured quantities.

Figure 1 shows the angular distribution parameters
λ, µ, and ν vs. pT . To extract these parameters, the
Drell-Yan data were grouped into 5 bins in cos θ and 8
bins in φ for each pT bin. A least-squares fit to the data
using Eq. 1 to describe the angular distribution was per-
formed. Only statistical errors are shown in Fig. 1. The
primary contributions to the systematic errors are the
uncertainties of the incident beam angles on target. The
analysis has been performed allowing the beam angles to
vary within their ranges of uncertainty. From this study,
we found that the systematic errors are comparable to the
statistical errors for each individual pT bin. However, the
pT averaged values 〈λ〉, 〈µ〉, and 〈ν〉, are dominatd by the
statistical errors.

For comparison with the p + d Drell-Yan data, the
NA10 π− +W data at 194 GeV/c and the E615 π− +W
data at 252 GeV/c are also shown in Fig. 1. To test the
validity of the Lam-Tung relation, also shown in Fig. 1
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FIG. 2: Parameter ν vs. pT in the Collins-Soper frame for
three Drell-Yan measurements. Fits to the data using Eq. 3
and MC = 2.4 GeV/c2 are also shown.

is the quantity, 2ν − (1 − λ), for all three experiments.
For p + d at 800 GeV/c, Fig. 1 shows that λ is consis-
tent with 1, in agreement with previous studies [3, 25],
while µ and ν deviate only slightly from zero. This is in
contrast to the pion-induced Drell-Yan results, in which
much larger values of ν are found. Table I lists the mean
values of λ, µ, ν and 2ν − (1 − λ) for these three experi-
ments. Again, the qualitatively different behavior of the
azimuthal angular distributions for p + d versus π− + W
is evident. It is also interesting to note that while E615
clearly establishes the violation of the Lam-Tung rela-
tion, the NA10 and the p + d data are largely consistent
with the Lam-Tung relation.

In an attempt to extract information on the magnitude
of the h⊥

1 function from the NA10 data, Boer [17] as-
sumed that h⊥

1 is proportional to the spin-averaged par-
ton distribution function f1:

h⊥

1 (x, k2
T ) = CH

αT

π

MCMH

k2
T + M2

C

e−αT k2

T f1(x), (2)

where kT is the quark transverse momentum, MH is the
mass of the hadron H (pion or nucleon), and MC and
CH are constant fitting parameters. A Gaussian trans-
verse momentum dependence of e−αT k2

T with αT = 1
(GeV/c)−2 was assumed. The cos 2φ dependence then
results from the convolution of the pion h⊥

1 /f1 term with
the nucleon h⊥

1 /f1 term, and the parameter ν is given as

ν = 16κ1

p2
T M2

C

(p2
T + 4M2

C)2
, (3)

where κ1 = CH1
CH2

/2, and H1, H2 denote the two inter-
acting hadrons. As shown in Fig. 2, a good description
of the NA10 data is obtained with κ1 = 0.47 ± 0.14 and
MC = 2.4 ± 0.5 GeV/c2. A fit to the E615 ν data at
252 GeV/c using MC = 2.4 GeV/c2, also shown in Fig.
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dependence of these quantities is shown in Fig. 1.
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nets (SM0, SM12, SM3) were used in order to optimize
acceptance for different dimuon mass regions. Data col-
lected with the “low mass” and “high mass” settings [26]
on liquid deuterium and empty targets were used in this
analysis. The detector system consisted of four track-
ing stations and a momentum analyzing magnet (SM3).
Tracks reconstructed by the drift chambers were extrapo-
lated to the target using the momentum determined from
the bend angle in SM3. The target position was used to
refine the parameters of each muon track.

From the momenta of the µ+ and µ−, kinematic vari-
ables of the dimuons (xF , mµµ, pT ) were readily recon-
structed. The muon angles θ and φ in the Collins-Soper
frame [27] were also calculated. To remove the quarko-
nium background, only events with 4.5 < mµµ < 9
GeV/c2 or mµµ > 10.7 GeV/c2 were analyzed. A total
of 118,000 p + d Drell-Yan events covering the decay an-
gular range −0.5 < cos θ < 0.5 and −π < φ < π remain.
Detailed Monte-Carlo simulations for the experiment us-
ing the MRST98 parton distribution functions [28] for
NLO Drell-Yan cross sections have shown good agree-
ments with the data for a variety of measured quantities.

Figure 1 shows the angular distribution parameters
λ, µ, and ν vs. pT . To extract these parameters, the
Drell-Yan data were grouped into 5 bins in cos θ and 8
bins in φ for each pT bin. A least-squares fit to the data
using Eq. 1 to describe the angular distribution was per-
formed. Only statistical errors are shown in Fig. 1. The
primary contributions to the systematic errors are the
uncertainties of the incident beam angles on target. The
analysis has been performed allowing the beam angles to
vary within their ranges of uncertainty. From this study,
we found that the systematic errors are comparable to the
statistical errors for each individual pT bin. However, the
pT averaged values 〈λ〉, 〈µ〉, and 〈ν〉, are dominatd by the
statistical errors.

For comparison with the p + d Drell-Yan data, the
NA10 π− +W data at 194 GeV/c and the E615 π− +W
data at 252 GeV/c are also shown in Fig. 1. To test the
validity of the Lam-Tung relation, also shown in Fig. 1
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p + d at 800 GeV/c

FIG. 2: Parameter ν vs. pT in the Collins-Soper frame for
three Drell-Yan measurements. Fits to the data using Eq. 3
and MC = 2.4 GeV/c2 are also shown.

is the quantity, 2ν − (1 − λ), for all three experiments.
For p + d at 800 GeV/c, Fig. 1 shows that λ is consis-
tent with 1, in agreement with previous studies [3, 25],
while µ and ν deviate only slightly from zero. This is in
contrast to the pion-induced Drell-Yan results, in which
much larger values of ν are found. Table I lists the mean
values of λ, µ, ν and 2ν − (1 − λ) for these three experi-
ments. Again, the qualitatively different behavior of the
azimuthal angular distributions for p + d versus π− + W
is evident. It is also interesting to note that while E615
clearly establishes the violation of the Lam-Tung rela-
tion, the NA10 and the p + d data are largely consistent
with the Lam-Tung relation.

In an attempt to extract information on the magnitude
of the h⊥

1 function from the NA10 data, Boer [17] as-
sumed that h⊥

1 is proportional to the spin-averaged par-
ton distribution function f1:

h⊥

1 (x, k2
T ) = CH

αT

π

MCMH

k2
T + M2

C

e−αT k2

T f1(x), (2)

where kT is the quark transverse momentum, MH is the
mass of the hadron H (pion or nucleon), and MC and
CH are constant fitting parameters. A Gaussian trans-
verse momentum dependence of e−αT k2

T with αT = 1
(GeV/c)−2 was assumed. The cos 2φ dependence then
results from the convolution of the pion h⊥

1 /f1 term with
the nucleon h⊥

1 /f1 term, and the parameter ν is given as

ν = 16κ1

p2
T M2

C

(p2
T + 4M2

C)2
, (3)

where κ1 = CH1
CH2

/2, and H1, H2 denote the two inter-
acting hadrons. As shown in Fig. 2, a good description
of the NA10 data is obtained with κ1 = 0.47 ± 0.14 and
MC = 2.4 ± 0.5 GeV/c2. A fit to the E615 ν data at
252 GeV/c using MC = 2.4 GeV/c2, also shown in Fig.

Huge Effect in
πW → µ+µ−X
Negligible Effect in
pd→ µ+µ−X
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FIG. 1: Parameters λ, µ, ν and 2ν − (1 − λ) vs. pT in the
Collins-Soper frame. Solid circles are for E866 p + d at 800
GeV/c, crosses are for NA10 π− + W at 194 GeV/c, and
diamonds are E615 π− + W at 252 GeV/c. The error bars
include the statistical uncertainties only.

ment of π−+W Drell-Yan production at 252 GeV/c with
broad coverage in the decay angle θ [11]. The E615 re-
sults showed that λ deviates from 1 at large values of xπ

(the Bjorken-x of the incident pions), and both µ and ν
have large non-zero values. Furthermore, the E615 data
showed that the Lam-Tung relation, 2ν = 1−λ, is clearly
violated. (See Fig. 1.)

The NA10 and E615 results on the Drell-Yan angu-
lar distributions strongly suggest that new effects be-
yond conventional perturbative QCD are present. Sev-
eral attempts have been made to interprete these data.
Brandenburg, Nachtmann and Mirke suggested that a
factorization-breaking QCD vacuum may lead to a corre-
lation between the transverse spin of the antiquark in the
pion and that of the quark in the nucleon [12]. This would
result in a non-zero cos 2φ angular dependence consistent
with the data. As pointed out by Boer et al., a possible
source for a factorization-breaking QCD vacuum is helic-
ity flip in the instanton model [13]. Several authors have
also considered higher-twist effects from quark-antiquark
binding in pions [14, 15], motivated by earlier work of
Berger and Brodsky [16]. This model predicts behavior

of µ and ν in qualitative agreement with the data. How-
ever, the model is strictly applicable only in the xπ → 1
region while the NA10 and E615 data exhibit nonpertur-
bative effects over a much broader kinematic region.

More recently, Boer pointed out [17] that the cos 2φ an-
gular dependences observed in NA10 and E615 could be
due to the kT -dependent parton distribution function h⊥

1 .
This so-called Boer-Mulders function [18] is an exam-
ple of a novel type of kT -dependent parton distribution
function, and it characterizes the correlation of a quark’s
transverse spin and its transverse momentum, kT , in an
unpolarized nucleon. It has an interesting property of be-
ing a time-reversal odd object and owes its existence to
the presence of initial/final state interactions [19]. The
Boer-Mulders function is the analog of the Collins frag-
mentation function [20], which describes the correlation
between the transverse spin of a quark and the trans-
verse momentum of the particle into which it hadronizes.
Model calculations for the nucleon (pion) Boer-Mulders
functions have been carried out [21, 22, 23, 24] in the
framework of quark-diquark (quark-spectator-antiquark)
model, and can successfully describe the ν behavior ob-
served in NA10 [24].

To shed additional light on the origins of the NA10 and
E615 Drell-Yan angular distributions, we have analyzed
p + d Drell-Yan angular distribution data at 800 GeV/c
from Fermilab E866. There are several physics motiva-
tions for this study. First, there has been no report on the
azimuthal angular distributions for proton-induced Drell-
Yan – all measurements so far have been for polar angular
distributions [3, 25]. Second, proton-induced Drell-Yan
data provide a stringent test of theoretical models. For
example, the cos 2φ dependence is expected to be much
reduced in proton-induced Drell-Yan if the underlying
mechanism involves the Boer-Mulders functions. This
is due to the expectation that the Boer-Mulders func-
tions are small for the sea-quarks. However, if the QCD
vacuum effect [12] is the origin of the cos 2φ angular de-
pendence, then the azimuthal behavior of proton-induced
Drell-Yan should be similar to that of pion-induced Drell-
Yan. Third, the validity of the Lam-Tung relation has
never been tested for proton-induced Drell-Yan, and the
present study provides a first test.

The Fermilab E866 experiment was performed using
the upgraded Meson-East magnetic pair spectrometer.
Details of the experimental setup have been described
elsewhere [26]. An 800 GeV/c primary proton beam with
up to 2 × 1012 protons per beam spill was incident upon
one of three identical 50.8 cm long cylindrical stainless
steel target flasks containing either liquid hydrogen, liq-
uid deuterium or vacuum. A copper beam dump located
inside the second dipole magnet (SM12) absorbed pro-
tons that passed through the target. Downstream of the
beam dump was an absorber wall that completely filled
the aperture of the magnet. This absorber wall removed
hadrons produced in the target and the beam dump.

Breakdown of Lam-Tung
2ν − (1− λ) "= 0

Huge Effect in
πW → µ+µ−X
Negligible Effect in
pd→ µ+µ−X
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Hot Topics in DIS
• Non-kt integrated quark distribution 

functions (cf. session Spin-4):

• transversity distribution

• Collins function

• Sivers function

• Boer-Mulders function

• Generalised Parton Distributions 
(Spin-6/7 (Diff 7/8

• Measurements of GE and GM (and 
associated discrepancies)

H. E. Jackson, PIC0435

Sivers Function

Boer-Mulders  
Function

T-Odd:
Require ISI or FSI 

Bj Sum Rule

Transversity

Unpolarized 
Distribution
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B. Seitz - Dept. of Physics & Astronomy - University of Glasgow

The Drell-Yan process
• process complementary to 

DIS

• cross section directly 
related to parton 
distribution functions

• no fragmentation functions 
involved

• all valence quarks will 
contribute in anti-proton 
annihilation

• wealth of (spin)-observables

1

σ

dσ

dΩ
∝ ν

2
sin2θcos2φ

ν ∝
∑

q

e2
q
h⊥1 h̄⊥1
f1 f̄1

ATT ∝
∑

q e2
q

(
h1h̄1

)
∑

q e2
q

(
f1 f̄1

)

B. SeitzTransversity Test
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h1 from

RHIC energies:    

small x1 and/or x2

h1q (x, Q2) evolution much slower than

Δq(x, Q2) and q(x, Q2) at small x 

ATT at RHIC is very small
smaller s would help   Martin, Schäfer, Stratmann, Vogelsang

 Barone, Calarco, Drago

at RHIC

p̄↑p↑ → !̄!X
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Conventional wisdom:  
Final-state interactions of struck quark can be neglected
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Single-spin 
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Final-State Interactions Produce 
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling!

• Requires nonzero orbital angular momentum of quark

• Arises from the interference of Final-State QCD                                                  
Coulomb phases in S- and P- waves; Wilson line effect;                       
gauge independent

• Relate to the quark contribution to the target proton                                        
anomalous magnetic moment and final-state QCD phases

• QCD phase at soft scale: IR Fixed Point?

• New window to QCD coupling and running gluon mass in the IR

• QED S and P Coulomb phases infinite -- difference of phases finite

!S ·!p jet×!q

!S ·!p jet×!qi

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark
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VI. THE QCD RUNNING COUPLING

In the DSE approach, the ghost-gluon coupling in the
M̃OM scheme is calculated by the gluon dressing func-
tion Z3 and the ghost dressing function Z̃3 and the vertex
renormalization factor Z̃1 as

g(q) = Z̃−1
1 Z1/2

3 (µ2, q2)Z̃3(µ2, q2)g(µ).

Our lattice simulation[16] of the gluon propagator and
the ghost propagator of MILCc yields the running cou-
pling shown in FIG.3. There are deviations from the
pQCD (dash-dotted line) and the DSE approach with
κ = 0.5 (long dashed line). As was done by the Orsay
group[9], we consider a correction including the A2 con-
densates and obtained 〈A2〉 ∼ a few GeV2.

-0.4-0.2 0 0.2 0.4 0.6 0.8 1
Log_10!q"GeV#$

0.5

1
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3
Α
s
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FIG. 3: The running coupling αs(q) as a function of
log10 q(GeV) of MILCc (a = 0.12fm) βimp = 6.76(triangles)
and 6.83(diamonds), (50 samles each).

The running coupling in the infrared can be estimated
from the quark-gluon coupling

g(q) = Zψ
1

−1
Z1/2

3 (µ2, q2)Z2(µ2, q2)g(µ),

where Z2 is the quark dressing function and Zψ
1 is the ver-

tex renormalization factor. An evaluation of Z2(µ2, q2)
is given in the next section.

VII. THE QUARK PROPAGATOR

We extended the measurement of the quark propagator
using Asqtad action of MILCc [14] to MILCf . In the
case of MILCc, we compared the Asqtad action and the
Staple+Naik action.

Due to long computation time for the convergence of
the conjugate gradient method, the number of samples is
of the order of 10 for each βimp and the bare quark mass
m0.

The quark propagator is defined as a statistical average
over Landau gauge fixed samples

Sαβ(p) =
〈
〈χp,α|

1
i /D(U) + m0

|χp,β〉
〉

.

In this expression, the inversion, 1

i /D(U)+m0
, is performed

via conjugate gradient method after preconditioning, and
we obtain

Sαβ(q) = Z2(q)
−iγq + M(q)
q2 + M(q)2

.

The mass function M(q) reflects dynamical chiral sym-
metry breaking. In high momentum region, it is param-
eterized as

M(q) = −
4π2dM 〈ψ̄ψ〉µ[log(q2/Λ2

QCD)]dM−1

3q2[log(µ2/Λ2
QCD)]dM

+
m(µ2)[log(µ2/Λ2

QCD)]dM

[log(q2/Λ2
QCD)]dM

,

where dM = 12/(33 − 2Nf ) and m(µ2) is the running
mass.

In the infrared region, we adopt the monopole fit

M(q) =
c̃Λ3

q2 + Λ2
+ m0.

The momentum dependence of M(q) and Z2(q) of
m0 = 13.6MeV in the infrared region of Asqtad action is
smoother than that of the Staple+Naik action. It could
be attributed to the effect of the tadpole renormalization.
The parameters c̃ and Λ in our fit of the mass function
are given in TABLE V.

We showed the quark wave function renormalization
Zψ(q2) = g1(µ2)/Z2(q2) of MILCf βimp = 7.11 using
the staple+Naik action in [14], where Z2(q2) is the bare
lattice data and g1(q2) is the coefficient of γµ of the vector
current vertex that compensates artefacts in Z2.

We adopt 〈A2〉 as a fitting parameter and calculate[9]

Zψ(q2) =
g1(µ2)
Z2(q2)

= Zpert
ψ (q2) +

(
α(µ)
α(q)

)(−γ0+γA2 )/β0

q2

〈A2〉µ
4(N2

c − 1)
Zpert

ψ (µ2)

+
c2

q4

where α(q) are data calculated in the M̃OM scheme us-
ing the same MILCf gauge configuration[7].

Here Nf is chosen to be 2 but the data does not change
much for 3. We choose ΛQCD = 0.691GeV and 〈ψ̄ψ〉µ =
−(0.7ΛQCD)3[17, 18].

Since g1(q2) in the infrared is expected to be given by
the running coupling, the absence of suppression of the
quark wave function renormalization suggests that the
infrared suppression of the running coupling obtained by
the ghost-gluon coupling could be an artefact.

In [20] the Z2(q) is normalized to 1 at q = 3GeV. In our
simulation without this kind of renormalization, Z2(q) at
q = 3GeV is close to 1 and the results are consistent.
Our mass function M(q) of βimp = 7.09 are about 20%

Schwinger-Dyson

lattice: Furui, Nakajima (MILC)

PQCD Asymptotic freedom 

DSE: Alkofer, Fischer, von Smekal et al.
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Φ(z) = z3/2φ(z)

φ(z = z0 = 1
Λc

) = 0.

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

αs(Q2)

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

Conformal window 
 Infrared  fixed-point

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′
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The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f⊥1T must arise from
interference ... but a distribution function

is just a forward scattering amplitude,
how can it contain an interference?

q

P

2

~
q q

P P

Im

Brodsky, Hwang, & Schmidt 2002

can interfere

with

and produce
a T-odd effect!

(also need Lz != 0)

It looks like higher-twist ... but no , these are soft gluons
= “gauge links” required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are

final (or initial) state interactions ... and may be

process dependent ! new universality issues e.g. Drell-Yan

Gamberg: Hermes
data compatible with BHS 

model

Schmidt, Lu: Hermes
charge pattern follow quark 
contributions to anomalous 

moment
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In the context of the quark-parton model, the virtual-photon asymmetry Ah
UT can be

represented in terms of parton distribution and fragmentation functions [7]:

Ah
UT (φ, φS) ∝ sin(φ + φS)

∑

q

e2
q I

[
hq

1T (x, p2
T ) H⊥,q

1 (z, k2
T )

]

+ sin(φ − φS)
∑

q

e2
q I

[
f⊥,q

1T (x, q2
T ) Dq

1(z, k
2
T )

]
+ . . . (3)

Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k

2
T ) is the usual unpolarized fragmentation

function.
The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].
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Sivers asymmetry from HERMES

3. INTERPRETATION

The Collins moment for π+, averaged over acceptance, is positive: Aπ+
C = 0.042 ±

0.014stat.. This agrees with expectations for the transversity distributions hq
1(x), derived

from the similarities to the well measured valence helicity distributions g q
1(x) [13], namely

positive hu
1(x) and negative hd

1(x). The acceptance averaged Collins moment for π− is
large and negative, especially at large x: Aπ−

C = −0.076 ± 0.0016stat.. This comes as a
surprise, as neither u nor d flavor dominates π− production and also |hd

1(x)| < |hu
1(x)| is

expected. This observation may be explained if the disfavored Collins function was larger
and opposite in sign, as e.g. suggested by the string fragmentation model of Ref. [14].
Note that little dependence on z is seen for the Collins moments.

The Sivers moments averaged over acceptance are Aπ+
S = 0.034 ± 0.008stat. and Aπ−

S =
−0.004 ± 0.010stat., i.e. positive for π+ and consistent with zero for π−. The former
result is the first indication for the existence of a non-zero Sivers distribution function
f⊥,u

1T . However, this conclusion has to be taken with caution, as presently an unknown
systematic uncertainty has to be attributed to this result, due to the yet unmeasured
asymmetry in the pion yield from exclusive ρ0 production. More data is presently collected
at Hermes, both for semi-inclusive pion and exclusive vector meson production, which
is hoped to allow a firm conclusion on the existence of a non-zero Sivers function.
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In the context of the quark-parton model, the virtual-photon asymmetry Ah
UT can be

represented in terms of parton distribution and fragmentation functions [7]:

Ah
UT (φ, φS) ∝ sin(φ + φS)

∑

q

e2
q I

[
hq

1T (x, p2
T ) H⊥,q

1 (z, k2
T )

]

+ sin(φ − φS)
∑

q

e2
q I

[
f⊥,q

1T (x, q2
T ) Dq

1(z, k
2
T )

]
+ . . . (3)

Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k

2
T ) is the usual unpolarized fragmentation

function.
The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *
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ea
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This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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We show that initial-state interactions contribute to the cos 2# distribution in unpolarized Drell-Yan lepton

pair production pp and pp̄→!!!"X , without suppression. The asymmetry is expressed as a product of

chiral-odd distributions h1
!(x1 ,p!

2 )# h̄1
!(x2 ,k!

2 ), where the quark-transversity function h1
!(x ,p!

2 ) is the trans-

verse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an unpo-

larized proton. We compute this !naive" T-odd and chiral-odd distribution function and the resulting cos 2#
asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this

model the function h1
!(x ,p!

2 ) equals the T-odd !chiral-even" Sivers effect function f 1T
! (x ,p!

2 ). This suggests

that the single-spin asymmetries in the semi-inclusive deep inelastic scattering and the Drell-Yan process are

closely related to the cos 2# asymmetry of the unpolarized Drell-Yan process, since all can arise from the same
underlying mechanism. This provides new insight regarding the role of the quark and gluon orbital angular

momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.

DOI: 10.1103/PhysRevD.67.054003 PACS number!s": 12.38.Bx, 13.85.Qk, 13.88.!e

I. INTRODUCTION

Single-spin asymmetries in hadronic reactions have been

among the most challenging phenomena to understand from

basic principles in QCD. Several such asymmetries have

been observed experimentally, and a number of theoretical

mechanisms have been suggested $1–6%. Recently, a new
way of producing single-spin asymmetries in semi-inclusive

deep inelastic scattering !SIDIS" and the Drell-Yan process
has been put forward $7,8%. It was shown that the exchange
of a gluon, viewed as initial- or final-state interactions, could

produce the necessary phase leading to a single transverse

spin asymmetry. The main new feature is that, despite the

presence of an additional gluon, this asymmetry occurs with-

out suppression by a large energy scale appearing in the pro-

cess under consideration. It has been recognized since then

$9% that this mechanism can be viewed as the so-called Sivers
effect $1,10%, which was thought to be forbidden by time-
reversal invariance $4%. Apart from generating Sivers effect

asymmetries, the mechanism offers new insight regarding the
role of orbital angular momentum of quarks in a hadron and

their spin-orbit couplings; in fact, the same S•! L! matrix ele-
ments enter the anomalous magnetic moment of the proton
$7%. The new mechanism for single target-spin asymmetries
in SIDIS necessarily requires noncollinear quarks and glu-
ons, and in the Sivers asymmetry the quarks carry no polar-
ization on average. As such it is very different from mecha-

nisms involving transversity !often denoted by h1 or &q),
which correlates the spin of the transversely polarized hadron
with the transverse polarization of its quarks.
In further contrast, the exchange of a gluon can also lead

to transversity of quarks inside an unpolarized hadron. This
chiral-odd partner of the Sivers effect has been discussed in
Refs. $6,11%, and in this paper we will show explicitly how
initial-state interactions generate this effect. Goldstein and

Gamberg reported recently that h1
!(x ,p!

2 ) is proportional to

f 1T
! (x ,p!

2 ) in the quark-scalar diquark model $12%. We con-
firm this and find that these two distribution functions are in
fact equal in this model. Although this property is not ex-
pected to be satisfied in general, nevertheless, one may ex-
pect these functions to be comparable in magnitude, since
both functions can be generated by the same mechanism. We
investigate the consequences of the present model result for
the unpolarized Drell-Yan process. We obtain an expression
for the cos 2# asymmetry in the lepton pair angular distribu-
tion. Here # is the angle between the lepton plane and the
plane of the incident hadrons in the lepton pair center of
mass. This asymmetry was measured a long time ago $13,14%
and was found to be large. Several theoretical explanations
!some of which will be briefly discussed below" have been
put forward, but we will show that a natural explanation can
come from initial-state interactions which are unsuppressed
by the invariant mass of the lepton pair.

II. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has been
measured in pion-nucleon scattering: '"N→(!("X , with
N deuterium or tungsten and a '" beam with energy of 140,
194, 286 GeV $13% and 252 GeV $14%. Conventionally

*Email address: dboer@nat.vu.nl
†Email address: sjbth@slac.stanford.edu
‡Email address: dshwang@sejong.ac.kr
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the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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We show that initial-state interactions contribute to the cos 2# distribution in unpolarized Drell-Yan lepton

pair production pp and pp̄→!!!"X , without suppression. The asymmetry is expressed as a product of

chiral-odd distributions h1
!(x1 ,p!

2 )# h̄1
!(x2 ,k!

2 ), where the quark-transversity function h1
!(x ,p!

2 ) is the trans-

verse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an unpo-

larized proton. We compute this !naive" T-odd and chiral-odd distribution function and the resulting cos 2#
asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this

model the function h1
!(x ,p!

2 ) equals the T-odd !chiral-even" Sivers effect function f 1T
! (x ,p!

2 ). This suggests

that the single-spin asymmetries in the semi-inclusive deep inelastic scattering and the Drell-Yan process are

closely related to the cos 2# asymmetry of the unpolarized Drell-Yan process, since all can arise from the same
underlying mechanism. This provides new insight regarding the role of the quark and gluon orbital angular

momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.

DOI: 10.1103/PhysRevD.67.054003 PACS number!s": 12.38.Bx, 13.85.Qk, 13.88.!e

I. INTRODUCTION

Single-spin asymmetries in hadronic reactions have been

among the most challenging phenomena to understand from

basic principles in QCD. Several such asymmetries have

been observed experimentally, and a number of theoretical

mechanisms have been suggested $1–6%. Recently, a new
way of producing single-spin asymmetries in semi-inclusive

deep inelastic scattering !SIDIS" and the Drell-Yan process
has been put forward $7,8%. It was shown that the exchange
of a gluon, viewed as initial- or final-state interactions, could

produce the necessary phase leading to a single transverse

spin asymmetry. The main new feature is that, despite the

presence of an additional gluon, this asymmetry occurs with-

out suppression by a large energy scale appearing in the pro-

cess under consideration. It has been recognized since then

$9% that this mechanism can be viewed as the so-called Sivers
effect $1,10%, which was thought to be forbidden by time-
reversal invariance $4%. Apart from generating Sivers effect

asymmetries, the mechanism offers new insight regarding the
role of orbital angular momentum of quarks in a hadron and

their spin-orbit couplings; in fact, the same S•! L! matrix ele-
ments enter the anomalous magnetic moment of the proton
$7%. The new mechanism for single target-spin asymmetries
in SIDIS necessarily requires noncollinear quarks and glu-
ons, and in the Sivers asymmetry the quarks carry no polar-
ization on average. As such it is very different from mecha-

nisms involving transversity !often denoted by h1 or &q),
which correlates the spin of the transversely polarized hadron
with the transverse polarization of its quarks.
In further contrast, the exchange of a gluon can also lead

to transversity of quarks inside an unpolarized hadron. This
chiral-odd partner of the Sivers effect has been discussed in
Refs. $6,11%, and in this paper we will show explicitly how
initial-state interactions generate this effect. Goldstein and

Gamberg reported recently that h1
!(x ,p!

2 ) is proportional to

f 1T
! (x ,p!

2 ) in the quark-scalar diquark model $12%. We con-
firm this and find that these two distribution functions are in
fact equal in this model. Although this property is not ex-
pected to be satisfied in general, nevertheless, one may ex-
pect these functions to be comparable in magnitude, since
both functions can be generated by the same mechanism. We
investigate the consequences of the present model result for
the unpolarized Drell-Yan process. We obtain an expression
for the cos 2# asymmetry in the lepton pair angular distribu-
tion. Here # is the angle between the lepton plane and the
plane of the incident hadrons in the lepton pair center of
mass. This asymmetry was measured a long time ago $13,14%
and was found to be large. Several theoretical explanations
!some of which will be briefly discussed below" have been
put forward, but we will show that a natural explanation can
come from initial-state interactions which are unsuppressed
by the invariant mass of the lepton pair.

II. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has been
measured in pion-nucleon scattering: '"N→(!("X , with
N deuterium or tungsten and a '" beam with energy of 140,
194, 286 GeV $13% and 252 GeV $14%. Conventionally

*Email address: dboer@nat.vu.nl
†Email address: sjbth@slac.stanford.edu
‡Email address: dshwang@sejong.ac.kr
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where !"#!(i/2)$%",%#& . We again apply this to 'F and

for the numerator spinor contraction, we obtain

1

2 (
"S

$ ū)P ,S *)r”#m *&+$)k”#m *u)P ,S *&,)! i#*+,

!
1

2
Tr! )P” #M *)r”#m *" i

2
)% i%#$%#% i* # )k”#m *$

!$2iP#$M )-ki$xri*#m)k$r * i&

!$2iP#)-M#m *)k!$r!* i when x!- . )35*

Then, from Eqs. )27*, )34* and )35* we obtain

h1
!)- ,r!*!$

1

4.
ag2e1e2

M )-M#m *)1$-*

)r!
2#B *

%
1

r!
2
ln" r!2#B

B
# . )36*

Thus, from Eqs. )31* and )36* we find the relation

f 1T
! )- ,r!*!h1

!)- ,r!*. )37*

We note that the equality Eq. )37* is a special property of the
quark-scalar diquark model.

We can write f 1T
! and h1

! given in Eqs. )31* and )36*
schematically as

f 1T
! )- ,r!*!h1

!)- ,r!*!
A

r!
2 )r!

2#B *
ln" r!2#B

B
# , )38*

with B as given in Eq. )23* and

A!
g2

2)2.*3" $
e1e2

4. #M )-M#m *)1$-*. )39*

We have the same formulas for f̄ 1T
! and h̄1

! with - ,r! ,A ,B

replaced by -̄ , r̄! ,Ā ,B̄ .
We note that we obtained f 1T

! and h1
! in Eq. )38* from the

final-state interaction diagram shown in Fig. 5)b*. These are
the functions relevant for semi-inclusive DIS $7&. The func-
tions arising from initial-state interactions have an overall

minus sign compared to those in Eq. )38*, as pointed out by
$9& and confirmed in $8&. However, f̄ 1T

! and h̄1
! also have this

property; therefore, the asymmetry factor # given in Eq. )16*
is in fact independent of whether we use h1

! and h̄1
! from

initial- or final-state interactions.

C. The cos 2! asymmetry

We now consider the convolution terms in the numerator

and denominator of the analyzing power # of the asymmetry
$Eq. )16*&:

F/F $)2ĥ•p! ĥ•k!$p!•k!*h1
!h̄1

!&

!% d2p!d
2k!02)p!#k!$q!*)2ĥ•p!ĥ•k!$p!•k!*

%h1
!)- ,p!

2 *h̄1
!)-̄ ,k!

2 *,

)40*
G/F $ f 1 f̄ 1&

!% d2p! d2k!02)p!#k!$q!* f 1)- ,p!
2 * f̄ 1)-̄ ,k!

2 *,

where we left out the flavor indices. With these definitions

we can write

#!
2

M 1M 2

(
a , ā

ea
2Fa

(
a , ā

ea
2Ga

. )41*

We will insert the schematic form Eq. )22* for f 1 and f̄ 1 and
Eq. )38* for h1

! and h̄1
! .

We first rewrite the denominator term G:

G!% d2b!

)2.*2
exp)$ib!•q!* f̃ 1)- ,b!

2 * f! 1)-̄ ,b!
2 *, )42*

where we have defined the Fourier transform of f 1(- ,k!
2 )

f̃ 1)- ,b!
2 */% d2p! exp) ib!•p!* f 1)- ,p!

2 *

!2.C" K0)!Bb *#
)D$B *

2!B
bK1)!Bb *# ,

)43*

where b/&b!&, and similarly for f̄ 1. Thus, we obtain the
exact expression for G:

G!2.CC̄%
0

1

dbb J0)b&q!&*

%" K0)!Bb *#
)D$B *

2!B
bK1)!Bb *#

%" K0)!B̄b *#
)D̄$B̄ *

2!B̄
bK1)!B̄b *# . )44*

Obtaining such an exact expression for F is much more dif-

ficult )if possible at all*, hence we will express F in a form
amenable to numerical evaluation. We first write

F!$%
0

1 db

2.
bJ2)b&q!&*h̃1

!)- ,b *h! 1
!)-̄ ,b *, )45*

where we have defined the Fourier transform
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Thus, from Eqs. )31* and )36* we find the relation
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We have the same formulas for f̄ 1T
! and h̄1

! with - ,r! ,A ,B

replaced by -̄ , r̄! ,Ā ,B̄ .
We note that we obtained f 1T

! and h1
! in Eq. )38* from the

final-state interaction diagram shown in Fig. 5)b*. These are
the functions relevant for semi-inclusive DIS $7&. The func-
tions arising from initial-state interactions have an overall

minus sign compared to those in Eq. )38*, as pointed out by
$9& and confirmed in $8&. However, f̄ 1T

! and h̄1
! also have this

property; therefore, the asymmetry factor # given in Eq. )16*
is in fact independent of whether we use h1

! and h̄1
! from

initial- or final-state interactions.

C. The cos 2! asymmetry

We now consider the convolution terms in the numerator

and denominator of the analyzing power # of the asymmetry
$Eq. )16*&:

F/F $)2ĥ•p! ĥ•k!$p!•k!*h1
!h̄1
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where we left out the flavor indices. With these definitions

we can write
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ea
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(
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2Ga

. )41*

We will insert the schematic form Eq. )22* for f 1 and f̄ 1 and
Eq. )38* for h1

! and h̄1
! .

We first rewrite the denominator term G:

G!% d2b!
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where b/&b!&, and similarly for f̄ 1. Thus, we obtain the
exact expression for G:
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ficult )if possible at all*, hence we will express F in a form
amenable to numerical evaluation. We first write
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

4

Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈

H22 − H11

1 + H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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Double Initial-State Interactions 
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Drell-Yan planar correlations

Double ISI

Hard gluon radiation

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.

Q4F1(Q2) # constant

Violates Lam-Tung relation!

Boer, Hwang, sjb

ar
X

iv
:h

ep
-p

h
/0

5
1
1
0
2
5
 v

1
  
 3

 N
o
v
 2

0
0
5

ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

PQCD Factorization (Lam Tung):

Model: Boer,
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Measurement of Angular Distributions of Drell-Yan Dimuons in p + d Interaction at
800 GeV/c
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V. Papavassiliou,9 B.K. Park,7 G. Petitt,4 M.E. Sadler,1 W.E. Sondheim,7 P.W. Stankus,10 T.N. Thompson,7

R.S. Towell,1 R.E. Tribble,11 M.A. Vasiliev,11 J.C. Webb,9 J.L. Willis,1 D.K. Wise,1 and G.R. Young10
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We report a measurement of the angular distributions of Drell-Yan dimuons produced using an
800 GeV/c proton beam on a deuterium target. The muon angular distributions in polar angle
θ and azimuthal angle φ have been measured over the kinematic range 4.5 < mµµ < 15 GeV/c2,
0 < pT < 4 GeV/c, and 0 < xF < 0.8. No significant cos2φ dependence is found in these proton-
induced Drell-Yan data, in contrast to the situation for pion-induced Drell-Yan. The data are
compared with expectations from models which attribute the cos2φ distribution to a QCD vacuum
effect or to the presence of the transverse-momentum-dependent Boer-Mulders structure function
h⊥

1 . Constraints on the magnitude of the sea-quark h⊥
1 structure functions are obtained.

PACS numbers: 13.85.Qk, 14.20.Dh, 24.85.+p, 13.88.+e

The Drell-Yan process [1], in which a charged lepton
pair is produced in a high-energy hadron-hadron interac-
tion via the qq̄ → l+l− process, has been a testing ground
for perturbative QCD and a unique tool for probing par-
ton distributions of hadrons. The Drell-Yan production
cross sections can be well described by next-to-leading
order QCD calculations [2]. This provides a firm theo-
retical framework for using the Drell-Yan process to de-
termine the antiquark content of nucleons and nuclei [3],
as well as the quark distributions of pions, kaons, and
antiprotons [4].

Despite the success of perturbative QCD in describing
the Drell-Yan cross sections, it remains a challenge to un-
derstand the angular distributions of the Drell-Yan pro-
cess. Assuming dominance of the single-photon process,
a general expression for the Drell-Yan angular distribu-
tion is [5]

dσ

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ, (1)

where θ and φ denote the polar and azimuthal angle,
respectively, of the l+ in the dilepton rest frame. In
the “naive” Drell-Yan model, where the transverse mo-

mentum of the quark is ignored and no gluon emission
is considered, λ = 1 and µ = ν = 0 are obtained.
QCD effects [6] and non-zero intrinsic transverse mo-
mentum of the quarks [7] can both lead to λ #= 1 and
µ, ν #= 0. However, λ and ν should still satisfy the rela-
tion 1 − λ = 2ν [5]. This so-called Lam-Tung relation,
obtained as a consequence of the spin-1/2 nature of the
quarks, is analogous to the Callan-Gross relation [8] in
Deep-Inelastic Scattering. While QCD effects can signif-
icantly modify the Callan-Gross relation, the Lam-Tung
relation is predicted to be largely unaffected by QCD
corrections [9].

The first measurement of the Drell-Yan angular dis-
tribution was performed by the NA10 Collaboration for
π− + W at 140, 194, and 286 GeV/c, with the highest
statistics at 194 GeV/c [10]. The cos 2φ angular depen-
dences showed a sizable ν, increasing with dimuon trans-
verse momentum (pT ) and reaching a value of ≈ 0.3 at
pT = 2.5 GeV/c (see Fig. 1). The observed behavior of ν
could not be described by perturbative QCD calculations
which predict much smaller values of ν [6]. The Fermilab
E615 Collaboration subsequently performed a measure-
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We report a measurement of the angular distributions of Drell-Yan dimuons produced using an
800 GeV/c proton beam on a deuterium target. The muon angular distributions in polar angle
θ and azimuthal angle φ have been measured over the kinematic range 4.5 < mµµ < 15 GeV/c2,
0 < pT < 4 GeV/c, and 0 < xF < 0.8. No significant cos2φ dependence is found in these proton-
induced Drell-Yan data, in contrast to the situation for pion-induced Drell-Yan. The data are
compared with expectations from models which attribute the cos2φ distribution to a QCD vacuum
effect or to the presence of the transverse-momentum-dependent Boer-Mulders structure function
h⊥

1 . Constraints on the magnitude of the sea-quark h⊥
1 structure functions are obtained.
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The Drell-Yan process [1], in which a charged lepton
pair is produced in a high-energy hadron-hadron interac-
tion via the qq̄ → l+l− process, has been a testing ground
for perturbative QCD and a unique tool for probing par-
ton distributions of hadrons. The Drell-Yan production
cross sections can be well described by next-to-leading
order QCD calculations [2]. This provides a firm theo-
retical framework for using the Drell-Yan process to de-
termine the antiquark content of nucleons and nuclei [3],
as well as the quark distributions of pions, kaons, and
antiprotons [4].

Despite the success of perturbative QCD in describing
the Drell-Yan cross sections, it remains a challenge to un-
derstand the angular distributions of the Drell-Yan pro-
cess. Assuming dominance of the single-photon process,
a general expression for the Drell-Yan angular distribu-
tion is [5]

dσ

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ, (1)

where θ and φ denote the polar and azimuthal angle,
respectively, of the l+ in the dilepton rest frame. In
the “naive” Drell-Yan model, where the transverse mo-

mentum of the quark is ignored and no gluon emission
is considered, λ = 1 and µ = ν = 0 are obtained.
QCD effects [6] and non-zero intrinsic transverse mo-
mentum of the quarks [7] can both lead to λ #= 1 and
µ, ν #= 0. However, λ and ν should still satisfy the rela-
tion 1 − λ = 2ν [5]. This so-called Lam-Tung relation,
obtained as a consequence of the spin-1/2 nature of the
quarks, is analogous to the Callan-Gross relation [8] in
Deep-Inelastic Scattering. While QCD effects can signif-
icantly modify the Callan-Gross relation, the Lam-Tung
relation is predicted to be largely unaffected by QCD
corrections [9].

The first measurement of the Drell-Yan angular dis-
tribution was performed by the NA10 Collaboration for
π− + W at 140, 194, and 286 GeV/c, with the highest
statistics at 194 GeV/c [10]. The cos 2φ angular depen-
dences showed a sizable ν, increasing with dimuon trans-
verse momentum (pT ) and reaching a value of ≈ 0.3 at
pT = 2.5 GeV/c (see Fig. 1). The observed behavior of ν
could not be described by perturbative QCD calculations
which predict much smaller values of ν [6]. The Fermilab
E615 Collaboration subsequently performed a measure-

3

TABLE I: Mean values of the λ, µ, ν parameters and the quan-
tity 2ν − (1 − λ) for three Drell-Yan measurements. The pT

dependence of these quantities is shown in Fig. 1.

p + d π− + W π− + W

800 GeV/c 194 GeV/c 252 GeV/c

(E866) (NA10) (E615)

〈λ〉 1.07 ± 0.07 0.83 ± 0.04 1.17 ± 0.06

〈µ〉 0.003 ± 0.013 0.008 ± 0.010 0.09 ± 0.02

〈ν〉 0.027 ± 0.010 0.091 ± 0.009 0.169 ± 0.019

〈2ν − (1 − λ)〉 0.12 ± 0.07 0.01 ± 0.04 0.51 ± 0.07

Several settings of the currents in the three dipole mag-
nets (SM0, SM12, SM3) were used in order to optimize
acceptance for different dimuon mass regions. Data col-
lected with the “low mass” and “high mass” settings [26]
on liquid deuterium and empty targets were used in this
analysis. The detector system consisted of four track-
ing stations and a momentum analyzing magnet (SM3).
Tracks reconstructed by the drift chambers were extrapo-
lated to the target using the momentum determined from
the bend angle in SM3. The target position was used to
refine the parameters of each muon track.

From the momenta of the µ+ and µ−, kinematic vari-
ables of the dimuons (xF , mµµ, pT ) were readily recon-
structed. The muon angles θ and φ in the Collins-Soper
frame [27] were also calculated. To remove the quarko-
nium background, only events with 4.5 < mµµ < 9
GeV/c2 or mµµ > 10.7 GeV/c2 were analyzed. A total
of 118,000 p + d Drell-Yan events covering the decay an-
gular range −0.5 < cos θ < 0.5 and −π < φ < π remain.
Detailed Monte-Carlo simulations for the experiment us-
ing the MRST98 parton distribution functions [28] for
NLO Drell-Yan cross sections have shown good agree-
ments with the data for a variety of measured quantities.

Figure 1 shows the angular distribution parameters
λ, µ, and ν vs. pT . To extract these parameters, the
Drell-Yan data were grouped into 5 bins in cos θ and 8
bins in φ for each pT bin. A least-squares fit to the data
using Eq. 1 to describe the angular distribution was per-
formed. Only statistical errors are shown in Fig. 1. The
primary contributions to the systematic errors are the
uncertainties of the incident beam angles on target. The
analysis has been performed allowing the beam angles to
vary within their ranges of uncertainty. From this study,
we found that the systematic errors are comparable to the
statistical errors for each individual pT bin. However, the
pT averaged values 〈λ〉, 〈µ〉, and 〈ν〉, are dominatd by the
statistical errors.

For comparison with the p + d Drell-Yan data, the
NA10 π− +W data at 194 GeV/c and the E615 π− +W
data at 252 GeV/c are also shown in Fig. 1. To test the
validity of the Lam-Tung relation, also shown in Fig. 1
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FIG. 2: Parameter ν vs. pT in the Collins-Soper frame for
three Drell-Yan measurements. Fits to the data using Eq. 3
and MC = 2.4 GeV/c2 are also shown.

is the quantity, 2ν − (1 − λ), for all three experiments.
For p + d at 800 GeV/c, Fig. 1 shows that λ is consis-
tent with 1, in agreement with previous studies [3, 25],
while µ and ν deviate only slightly from zero. This is in
contrast to the pion-induced Drell-Yan results, in which
much larger values of ν are found. Table I lists the mean
values of λ, µ, ν and 2ν − (1 − λ) for these three experi-
ments. Again, the qualitatively different behavior of the
azimuthal angular distributions for p + d versus π− + W
is evident. It is also interesting to note that while E615
clearly establishes the violation of the Lam-Tung rela-
tion, the NA10 and the p + d data are largely consistent
with the Lam-Tung relation.

In an attempt to extract information on the magnitude
of the h⊥

1 function from the NA10 data, Boer [17] as-
sumed that h⊥

1 is proportional to the spin-averaged par-
ton distribution function f1:

h⊥

1 (x, k2
T ) = CH

αT

π

MCMH

k2
T + M2

C

e−αT k2

T f1(x), (2)

where kT is the quark transverse momentum, MH is the
mass of the hadron H (pion or nucleon), and MC and
CH are constant fitting parameters. A Gaussian trans-
verse momentum dependence of e−αT k2

T with αT = 1
(GeV/c)−2 was assumed. The cos 2φ dependence then
results from the convolution of the pion h⊥

1 /f1 term with
the nucleon h⊥

1 /f1 term, and the parameter ν is given as

ν = 16κ1

p2
T M2

C

(p2
T + 4M2

C)2
, (3)

where κ1 = CH1
CH2

/2, and H1, H2 denote the two inter-
acting hadrons. As shown in Fig. 2, a good description
of the NA10 data is obtained with κ1 = 0.47 ± 0.14 and
MC = 2.4 ± 0.5 GeV/c2. A fit to the E615 ν data at
252 GeV/c using MC = 2.4 GeV/c2, also shown in Fig.

3

TABLE I: Mean values of the λ, µ, ν parameters and the quan-
tity 2ν − (1 − λ) for three Drell-Yan measurements. The pT

dependence of these quantities is shown in Fig. 1.

p + d π− + W π− + W

800 GeV/c 194 GeV/c 252 GeV/c

(E866) (NA10) (E615)

〈λ〉 1.07 ± 0.07 0.83 ± 0.04 1.17 ± 0.06

〈µ〉 0.003 ± 0.013 0.008 ± 0.010 0.09 ± 0.02

〈ν〉 0.027 ± 0.010 0.091 ± 0.009 0.169 ± 0.019

〈2ν − (1 − λ)〉 0.12 ± 0.07 0.01 ± 0.04 0.51 ± 0.07

Several settings of the currents in the three dipole mag-
nets (SM0, SM12, SM3) were used in order to optimize
acceptance for different dimuon mass regions. Data col-
lected with the “low mass” and “high mass” settings [26]
on liquid deuterium and empty targets were used in this
analysis. The detector system consisted of four track-
ing stations and a momentum analyzing magnet (SM3).
Tracks reconstructed by the drift chambers were extrapo-
lated to the target using the momentum determined from
the bend angle in SM3. The target position was used to
refine the parameters of each muon track.

From the momenta of the µ+ and µ−, kinematic vari-
ables of the dimuons (xF , mµµ, pT ) were readily recon-
structed. The muon angles θ and φ in the Collins-Soper
frame [27] were also calculated. To remove the quarko-
nium background, only events with 4.5 < mµµ < 9
GeV/c2 or mµµ > 10.7 GeV/c2 were analyzed. A total
of 118,000 p + d Drell-Yan events covering the decay an-
gular range −0.5 < cos θ < 0.5 and −π < φ < π remain.
Detailed Monte-Carlo simulations for the experiment us-
ing the MRST98 parton distribution functions [28] for
NLO Drell-Yan cross sections have shown good agree-
ments with the data for a variety of measured quantities.

Figure 1 shows the angular distribution parameters
λ, µ, and ν vs. pT . To extract these parameters, the
Drell-Yan data were grouped into 5 bins in cos θ and 8
bins in φ for each pT bin. A least-squares fit to the data
using Eq. 1 to describe the angular distribution was per-
formed. Only statistical errors are shown in Fig. 1. The
primary contributions to the systematic errors are the
uncertainties of the incident beam angles on target. The
analysis has been performed allowing the beam angles to
vary within their ranges of uncertainty. From this study,
we found that the systematic errors are comparable to the
statistical errors for each individual pT bin. However, the
pT averaged values 〈λ〉, 〈µ〉, and 〈ν〉, are dominatd by the
statistical errors.

For comparison with the p + d Drell-Yan data, the
NA10 π− +W data at 194 GeV/c and the E615 π− +W
data at 252 GeV/c are also shown in Fig. 1. To test the
validity of the Lam-Tung relation, also shown in Fig. 1
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FIG. 2: Parameter ν vs. pT in the Collins-Soper frame for
three Drell-Yan measurements. Fits to the data using Eq. 3
and MC = 2.4 GeV/c2 are also shown.

is the quantity, 2ν − (1 − λ), for all three experiments.
For p + d at 800 GeV/c, Fig. 1 shows that λ is consis-
tent with 1, in agreement with previous studies [3, 25],
while µ and ν deviate only slightly from zero. This is in
contrast to the pion-induced Drell-Yan results, in which
much larger values of ν are found. Table I lists the mean
values of λ, µ, ν and 2ν − (1 − λ) for these three experi-
ments. Again, the qualitatively different behavior of the
azimuthal angular distributions for p + d versus π− + W
is evident. It is also interesting to note that while E615
clearly establishes the violation of the Lam-Tung rela-
tion, the NA10 and the p + d data are largely consistent
with the Lam-Tung relation.

In an attempt to extract information on the magnitude
of the h⊥

1 function from the NA10 data, Boer [17] as-
sumed that h⊥

1 is proportional to the spin-averaged par-
ton distribution function f1:

h⊥

1 (x, k2
T ) = CH

αT

π

MCMH

k2
T + M2

C

e−αT k2

T f1(x), (2)

where kT is the quark transverse momentum, MH is the
mass of the hadron H (pion or nucleon), and MC and
CH are constant fitting parameters. A Gaussian trans-
verse momentum dependence of e−αT k2

T with αT = 1
(GeV/c)−2 was assumed. The cos 2φ dependence then
results from the convolution of the pion h⊥

1 /f1 term with
the nucleon h⊥

1 /f1 term, and the parameter ν is given as

ν = 16κ1

p2
T M2

C

(p2
T + 4M2

C)2
, (3)

where κ1 = CH1
CH2

/2, and H1, H2 denote the two inter-
acting hadrons. As shown in Fig. 2, a good description
of the NA10 data is obtained with κ1 = 0.47 ± 0.14 and
MC = 2.4 ± 0.5 GeV/c2. A fit to the E615 ν data at
252 GeV/c using MC = 2.4 GeV/c2, also shown in Fig.

Huge Effect in
πW → µ+µ−X
Negligible Effect in
pd→ µ+µ−X

33



 Stan Brodsky
  SLAC

FAIR Workshop 
October 15-16, 2007

Novel Anti-Proton QCD Physics34

Anomalous effect from Double ISI in 
Massive Lepton Production

• Leading Twist, valence quark dominated

• Violates Lam-Tung Relation!

• Not obtained from standard PQCD subprocess analysis

• Normalized to the square of the single spin asymmetry in semi-
inclusive DIS

• No polarization required 

• Challenge to standard picture of PQCD Factorization

Boer, Hwang, sjb
ν(QT )

cos 2φ correlation

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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cos 2φ correlation in DY from double ISI

Ep
lab = 50 GeV

Counting Rules, AdS/CFT

dσ
dxF

(dA→ pX) ∼ (1− xF )5.

dσ
dxF

(dA→∆++X) ∼ (1− xF )5.

xF = p+
H/p+

d → 1
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the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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the differential cross section is written as
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These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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c̄

g

Q4F1(Q2)→ const

x→ 1 ≡ kz → −∞

α(t) = α(0)
1−Π(t)

2πρ(x, b, Q)

c

c̄

g

Q4F1(Q2)→ const

x→ 1 ≡ kz → −∞

α(t) = α(0)
1−Π(t)

2πρ(x, b, Q)

Problem for factorization when both ISI and FSI occur
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FIG. 8: The exchange of two extra gluons, as in this graph,
will tend to give non-factorization in unpolarized cross sec-
tions.

FIG. 9: In a conventional perturbative QCD calculation for
an unpolarized partonic cross section, non-factorization by
the mechanisms discussed in this paper would first appear in
graphs of this order.

culations. Normally one performs calculations with on-
shell massless quarks and gluons, and extracts collinear
divergences that are grouped with parton densities and
fragmentation functions; any remaining divergences can-
cel between graphs. Non-factorization in the hadronic
cross section corresponds to uncanceled divergences in
quark-gluon calculations. The lowest order in which the
mechanisms we have discussed could possible give an un-
canceled divergence in unpolarized partonic cross sec-
tions is NNNLO, as in Fig. 9. The region for the un-
canceled divergence is where the lower gluon is collinear
to the lower incoming quark, and two of the exchanged
gluons are soft. This graph is at least one order beyond
all standard perturbative QCD calculations.

Because our calculations directly concern cross sec-
tions that use transverse-momentum-dependent parton
densities, a certain amount of care is needed in inter-
preting the results. The natural direction for the Wilson
lines is light-like, as from Eq. (3.8). However light-like
Wilson lines give divergences in transverse-momentum-
dependent densities [7]. These are due to rapidity di-
vergences [20] in integrals over gluon momentum; they
cancel [7] in conventional parton densities only because
of an integral over all transverse momentum in integrated

parton densities. The solution adopted by Collins, Soper
and Sterman [7] (CSS) was to define parton densities
without Wilson lines but in a non-light-like axial gauge.
The gauge-fixing vector introduces a cut-off on gluon ra-
pidity, and then an evolution equation with respect to
the cut-off was derived. The non-perturbative functions
involved in this CSS evolution equation have been mea-
sured (e.g., [21]) in fits to DY cross sections, and would
be an essential ingredient in testing non-factorization.

However, there are some unsatisfactory features of the
use of axial gauges, which are made particularly evident
in polarized cross sections. This includes complications
concerning gauge links at infinity [22], when a Wilson line
formalism is used. A much better definition is to use a
non-light-like Wilson line. This again obeys an equation
of the CSS form. It is also possible to use a subtractive
formalism [20, 23] with light-like Wilson lines but with
generalized renormalization factors involving vacuum ex-
pectation values of Wilson lines, which also implement a
rapidity cutoff, and lead to a CSS equation.

To test the predicted non-factorization, we simply need
predictions of high-pT hadrons in hadron-hadron colli-
sions, made on the basis of fits to parton densities in
DIS and DY and to fragmentation functions in e+e− and
SIDIS [24]. Probing the SSA would be particularly inter-
esting, and such measurements are underway at RHIC
[25, 26]. The same physics is probed in the transverse
shape of jets, and would be worth investigating.

Our counterexample applies in a kinematic region
where the normal intuitive ideas of the parton model
appear quite appropriate, even with a generalization to
kT -factorization. Therefore it forces us to question un-
der what conditions factorization is actually valid and to
what extent it has actually been demonstrated. It cannot
be assumed that naive extensions of apparently estab-
lished results are applicable beyond the cases to which
the actual proofs explicitly apply.

For hadron-hadron collisions, factorization has been
proved [5, 6] for the Drell-Yan process integrated over
transverse momentum or at large transverse momentum
(of order Q). These proofs apply in the presence of gluon
exchanges of the kind that we discuss in the present pa-
per. But these papers do not go beyond this, to the pro-
duction of hadrons. Because factorization is important to
all aspects of hadron-collider phenomenology, it is critical
to solve this problem for the hadroproduction of high-pT

hadrons. Given our counterexample to kT -factorization,
a proof of factorization can only succeed in a situation
where conventional collinear factorization is appropriate.
For dihadron production this is when the hadron-pair has
itself large transverse momentum or when the pair’s out-
of-plane transverse momentum is integrated over a wide
range.

In fact, Nayak, Qiu and Sterman [27] have recently
given strong arguments that collinear factorization does
indeed hold in such a situations. The graphs examined
are similar to ours. They apply Ward identities to prove
an eikonalization generalizing our specific calculations.
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Factorization is violated in production of high-transverse-momentum particles in
hadron-hadron collisions

John Collins∗

Physics Department, Penn State University, 104 Davey Laboratory, University Park PA 16802, U.S.A.

Jian-Wei Qiu†

Department of Physics and Astronomy, Iowa State University, Ames IA 50011, U.S.A. and
High Energy Physics Division, Argonne National Laboratory, Argonne IL 60439, U.S.A.

(Dated: 15 May 2007)

We show that hard-scattering factorization is violated in the production of high-pT hadrons in
hadron-hadron collisions, in the case that the hadrons are back-to-back, so that kT factorization
is to be used. The explicit counterexample that we construct is for the single-spin asymmetry
with one beam transversely polarized. The Sivers function needed here has particular sensitivity
to the Wilson lines in the parton densities. We use a greatly simplified model theory to make the
breakdown of factorization easy to check explicitly. But the counterexample implies that standard
arguments for factorization fail not just for the single-spin asymmetry but for the unpolarized cross
section for back-to-back hadron production in QCD in hadron-hadron collisions. This is unlike
corresponding cases in e+e− annihilation, Drell-Yan, and deeply inelastic scattering. Moreover, the
result endangers factorization for more general hadroproduction processes.

PACS numbers: 12.38.Bx, 12.39.St, 13.85.Ni, 13.87.-a, 13.88.+e

I. INTRODUCTION

The great importance of hard-scattering factorization
in high-energy phenomenology hardly needs emphasis.
Essential to its application and predictiveness is the uni-
versality of parton densities (and fragmentation func-
tions, etc) between different reactions. However, as can
be seen from [1, 2, 3, 4], process-dependent Wilson lines
appear to be needed in the inclusive production of two
high-transverse-momentum particles in hadron-hadron
collisions, i.e., in the process

H1 + H2 → H3 + H4 + X. (1.1)

In this paper we will show that this situation definitively
leads to a breakdown of factorization.

The standard expectation is that the cross section is
a convolution of a hard scattering coefficient dσ̂, par-
ton densities, fragmentation functions and a possible soft
function:

E3E4

dσ

d3p3d3p4

=
∑

∫

dσ̂i+j→k+l+X fi/1 fj/2 d3/k d4/l

+ power-suppressed correction.
(1.2)

Here the sum and integral are over the flavors and mo-
menta of the partons of the hard scattering, fi/H denotes
a parton density, and dH/i a fragmentation function.

It is noteworthy that the classic published proofs for
factorization in hadron-hadron scattering [5, 6] only con-
cerned the Drell-Yan process. There are a number of

∗Electronic address: collins@phys.psu.edu
†Electronic address: jwq@iastate.edu

difficult issues in the proof that are highly non-trivial
to extend to other reactions in hadron-hadron collisions,
even though Eq. (1.2) is a standard expectation.

We will examine the case that the produced hadrons
are almost back-to-back. Then the appropriate factoriza-
tion property is kT -factorization, which entails [7] the use
of transverse-momentum dependent (TMD) parton den-
sities and fragmentation functions. However, the issues
raised by our counterexample to factorization are suffi-
ciently general that they create a need to examine very
carefully the arguments for factorization in hadropro-
duction of hadrons even in situations where ordinary
collinear factorization with integrated densities is appro-
priate. In the case of kT -factorization with TMD den-
sities, the factorization formula needs the insertion of a
soft factor S, not shown in Eq. (1.2).

The problems concern gluon exchanges between differ-
ent kinds of collinear line, as in Fig. 7 below. To obtain
factorization, the gluon attachments must be converted
to Wilson lines in gauge-invariant definitions of the par-
ton densities and fragmentation functions. This relies [6]
on the use of Ward identities applied to approximations
to the amplitudes. But the approximations are only valid
after certain contour deformations on the loop momenta.

Bacchetta, Bomhof, Mulders and Pijlman [1, 2, 3, 4]
argued that because of the complicated combination of
initial- and final-state interactions, the Wilson lines must
be modified. What is not so clear is the interpretation of
their result. So in the present paper we present an argu-
ment to make fully explicit the failure of factorization.

Since the issue is one of factorization in general, and
not just specifically in QCD, we clarify the issue by ex-
amining a particular process in a model field theory. The
process is a transverse single-spin asymmetry of the kind
controlled by a Sivers function. This is a case where prob-

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.
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               correlation for quarkonium production at 
leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Physics of Rescattering

• Diffractive DIS: New Insights into Final State 
Interactions in QCD

• Origin of Hard Pomeron

• Structure Functions not Probability 
Distributions!

• T-odd SSAs, Shadowing, Antishadowing

• Diffractive dijets/ trijets, doubly diffractive Higgs

• Novel Effects: Color Transparency, Color 
Opaqueness, Intrinsic Charm, Odderon
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Fig. 4. Fraction r of events with a large rapidity gap, 

qmax < 1.5, as a function of Q2 A for two ranges of XDA. No 
acceptance corrections have been applied. 

small compared to WDA and is typically smaller than 

10 GeV. The events span the range of  WDA from 60 

to 270 GeV. For  WDA > 150 GeV these events are 

well separated from the rest of  the sample. In this 

region, acceptance corrections have little dependence 

on W and the contr ibut ion of  these events to the deep 

inelastic cross section is, within errors, constant with 

WDA, as expected for a diffractive type of  interaction 

(see fig. 3b). At smaller values of  WDA, the acceptance 

for these events decreases since the final state hadronic 

system is boosted in the forward direction. 

In fig. 3c we present the dis tr ibut ion of  Mx for 

events with r/max< 1.5 and WOA > 150 GeV. The dis- 

t r ibution is not corrected for detector or acceptance ef- 

fects. Although this acceptance could be model  depen- 

dent, the three models  we have checked [ 13,14,16 ] 

predict  a flat acceptance with Mx for Mx > 4 GeV. 

We observe a spectrum which, given our resolution, 

the uncertainty about the acceptance and the large sta- 

tistical errors, is compat ible  with a 1/MZx dependence,  

shown as the solid curve. 

The fraction of  events with a large rapidi ty gap, pre- 

sented as a function of  Q~A in fig. 4 for two selected 

bins of  XOA, is, within errors, independent  of  Q2. The 

Q2 dependence is little affected by acceptance correc- 

tions. In QCD terminology, leading twist contribu- 

tions to structure functions show little (at most loga- 

r i thmic)  dependence on Q2 at fixed x, whereas higher 

twist terms fall as a power of  Q2. Since the proton 

structure function determined for our DIS data  sam- 

ple shows a leading twist behavior  [29], the produc- 

t ion mechanism responsible for the large rapidity gap 

events is also likely to be a leading twist effect. The 

decrease with x is partly due to acceptance, since for 

larger values of x the final hadronic state is boosted 

in the direction of  the proton so that such events will 

not be identified as having a large rapidi ty  gap in our 

detector. 

8. Discussion and conclusions 

In a sample of  deep inelastic neutral current scatter- 

ing events, we have observed a class of  events with a 

large rapidi ty gap in the final hadronic state. The flat 

rapidi ty  distr ibution,  the lack of  W dependence and 

the shape of  the Mx distr ibution are suggestive of  a 

diffractive interaction between a highly virtual pho- 

ton and the proton, mediated by the exchange of  the 

pomeron [5 ]. The fact that the percentage of  events 

with a large rapidity gap shows only a weak depen- 

dence on Q2 points to a leading twist contribution to 

the proton structure function. 

For  the hypothesis that events with a large rapidi ty 

gap are produced by a diffractive mechanism, one 

expects such events to be accompanied by a quasi- 

elastically scattered proton. For  this type of  pro- 

cess the gap between the maximum rapidity of  the 

calorimeter  and the rapidi ty of  the scattered proton is 

about three units. The selection criteria, in part icular 

the requirement of  a rapidi ty gap in the detector of  

at least 2.8 units, l imit  the acceptance for diffractive- 

like events. Since we have made no corrections for 

acceptance, the 5.4% for DIS events with a large 

rapidity gap should be considered a lower l imit  for 

diffractively produced events. 
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Inclusive Diffraction at HERA

F.-P. Schillinga∗ (on behalf of the H1 and ZEUS collaborations) †

aDESY, Notkestr. 85, D-22603 Hamburg, Germany

New precision measurements of inclusive diffractive deep-inelastic ep scattering interactions, performed by the
H1 and ZEUS collaborations at the HERA collider, are discussed. A new set of diffractive parton distributions,
determined from recent high precision H1 data, is presented.

1. INTRODUCTION

One of the biggest challenges in our under-
standing of QCD is the nature of colour sin-
glet exchange or diffractive interactions. The
electron-proton collider HERA is an ideal place to
study hard diffractive processes in deep-inelastic
ep scattering (DIS). In such interactions, the
point-like virtual photon probes the structure of
colour singlet exchange, similarly to inclusive DIS
probing proton structure.

2

!

Figure 1: Illustration of
a diffractive DIS event.

At HERA,
around 10% of
low x events
are diffractive
[1]. Experimen-
tally, such events
are identified by
either tagging
the elastically
scattered pro-
ton in Roman
pot spectrometers
60− 100 m down-
stream from the
interaction point
or by asking for

a large rapidity gap without particle production
between the central hadronic system and the
proton beam direction.

A diagram of diffractive DIS is shown in Fig. 1.
A virtual photon coupling to the beam electron

∗e-mail address: fpschill@mail.desy.de
†Talk presented at 31st Intl. Conference on High Energy
Physics ICHEP 2002, Amsterdam

interacts diffractively with the proton through
the exchange of a colour singlet and produces a
hadronic system X with mass MX in the final
state. If the 4-momenta of the incoming (out-
going) electron and proton are labeled l (l′) and
p (p′) respectively, the following kinematic vari-
ables can be defined: Q2 = −q2 = −(l − l′)2, the
photon virtuality; β = Q2/q.(p − p′), the longi-
tudinal momentum fraction of the struck quark
relative to the diffractive exchange; xIP = q.(p −
p′)/q.p, the fractional proton momentum taken
by the diffractive exchange and t = (p− p′)2, the
4-momentum squared transferred at the proton
vertex. Bjorken-x is given by x = xIP β. For the
measurements presented here typical values of xIP

are < 0.05. y = Q2/sx denotes the inelasticity,
where s is the ep CMS energy.

A diffractive reduced cross section σD(4)
r can be

defined via

d4σep→eXp

dxIP dt dβ dQ2
=

4πα2

βQ4

(

1 − y +
y2

2

)

σD(4)
r (xIP , t, β, Q2) , (1)

which is related to the diffractive structure func-
tions FD

2 and the longitudinal FD
L by

σD
r = FD

2 −
y2

2(1 − y + y2

2 )
FD

L . (2)

Except at the highest y, σD
r = FD

2 to a very good
approximation. If the outgoing proton is not de-
tected, the measurements are integrated over t:

σD(3)
r =

∫

dt σD(4)
r .

10% to 15% 
of DIS events 

are 
diffractive !

Remarkable observation at HERA
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Final-State Interaction 
Produces Diffractive DIS 

Quark Rescattering 

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Low-Nussinov model of Pomeron
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

45

Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb
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Fig. 1 

Double-Diffractive Drell-Yan

pp→ p + !+!−+ p

Prototype for exclusive Higgs production

QCD at the Amplitude Level
and New Perspectives from AdS/CFT

ΛQCD = 0.184 GeV for the pion

ΛQCD = 0.157 GeV

Double-Diffractive Drell-Yan

pp→ p + !+!−+ p

Prototype for exclusive Higgs production

QCD at the Amplitude Level
and New Perspectives from AdS/CFT

ΛQCD = 0.184 GeV for the pion

ΛQCD = 0.157 GeV

Phys. Rev. Lett. 23, 1363–1365 (1969)

Large-Mass Timelike Muon Pairs in Hadronic Interactions
S. M. Berman*, D. J. Levy, and T. L. Neff§ 

pp→ p + !+!−+ p

Measure antiproton-proton scattering

M ∝ 1
s2u2

dσ
dt (pp→ (πp)p) = F (θcm)

s10

dσ
dt (pp→ pp) = F (θcm)

s10

p 46
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Paul Hoyer Jyväskylä 27.3 2007
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! N " µ+ µ- X at high xF

xF " 1

In the limit where (1-xF)Q2 is fixed as Q2 " # :

µ+

µ-

!

N

q Soft scattering of stopped

quark in target affects hard 

process

Entire pion wf

contributes to

hard process

Virtual photon is 

longitudinally 

polarized

Berger and Brodsky, PRL 42 (1979) 940

x " 0

x " 1
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25

! N " µ+ µ- X at high xF

xF " 1

In the limit where (1-xF)Q2 is fixed as Q2 " # :

µ+

µ-

!

N

q Soft scattering of stopped

quark in target affects hard 

process

Entire pion wf

contributes to

hard process

Virtual photon is 

longitudinally 

polarized

Berger and Brodsky, PRL 42 (1979) 940

x " 0

x " 1

Direct Higher Twist Subprocess
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Chicago-Princeton
Collaboration

xπ = xq̄

The p/π+ and p̄/π− ratios as a function of
pT increase dramatically to values ∼ 1 as a
function of centrality in Au + Au collisions
at RHIC which was totally unexpected and
is still not fully understood.

E dσ
d3p

(pp→ γX)

E dσ
d3p

(pp→ π0X)

√
snE dσ

d3p
(pp→ γX) at fixed xT

Dramatic change in 
angular distribution at 

large xF

Direct Subprocess Prediction

 Phys.Rev.Lett.55:2649,1985

Example of a higher-twist 
direct subprocess
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Berger, Lepage, sjb
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"
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q
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πq → γ∗q

γ∗

π

p

#

#̄

q

Pion appears directly in subprocess at large xF
All of the pion’s momentum is transferred to the lepton pair

Lepton Pair is produced longitudinally polarized

Initial State 
Interaction
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πq → γ∗q

γ∗

π

p

#

#̄

q

Diquark appears directly in subprocess 
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All of the diquark’s momentum is transferred to the lepton pair
Lepton Pair is produced longitudinally polarized

p̄

p̄

p̄

A(1− x)3(1 + cos2 θ) + B
(1− x) sin2 θ

Q2
+ C

(1 + cos2 θ)
(1− x)Q4

[q̄q̄]q → γ∗q̄
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|p,Sz>=∑
n=3

ψn(xi, !k⊥i,λi)|n;k⊥i,λi>|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,!k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

!k⊥i =!0⊥.

sum over states with n=3, 4, ...constituents

Fixed LF time

51

Intrinsic heavy quarks,    s̄(x) != s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep→ eπ+n

Pπ/p " 30%

Violation of Gottfried sum rule

ū(x) #= d̄(x)

Does not produce (C = −) J/ψ,Υ

Produces (C = −) J/ψ,Υ

Same IC mechanism explains A2/3

51
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Intrinsic Heavy-Quark Fock States

• Rigorous prediction of QCD, OPE

• Color-Octet Color-Octet Fock State! 

• Probability

• Large Effect at high x

• Greatly increases kinematics of colliders  such as Higgs production 
(Kopeliovich, Schmidt, Soffer, sjb)

• Severely underestimated in conventional parameterizations of 
heavy quark distributions (Pumplin, Tung)

• Many empirical tests  

PQQ̄ ∝
1

M2
Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) "

Λ2
QCD

M2
Q

PQQ̄ ∝
1

M2
Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) "

Λ2
QCD

M2
Q

PQQ̄ ∝
1

M2
Q

PQQ̄QQ̄ ∼ α2
sPQQ̄

Pcc̄/p # 1%

Q

Q̄

b⊥ = O(1/MQ)

Hoyer, Peterson, Sakai, sjb
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J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

First Evidence for 
Intrinsic Charm

Measurement of Charm 
Structure  Function 

DGLAP / Photon-Gluon Fusion: factor of 30 too sma#

53

factor of 30 !
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• EMC data: c(x, Q2) > 30×DGLAP
Q2 = 75 GeV2, x = 0.42

• High xF pp→ J/ψX

• High xF pp→ J/ψJ/ψX

• High xF pp→ ΛcX

• High xF pp→ ΛbX

• High xF pp→ Ξ(ccd)X (SELEX)

 C.H. Chang,  J.P. Ma,  C.F. Qiao and  X.G.Wu,
 Hadronic production of the doubly charmed baryon Xi/cc with 
intrinsic charm,’’  arXiv:hep-ph/0610205.

54
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Leading Hadron Production 
from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks
Produce J/ψ, Λc and other Charm Hadrons at High xF

PX X

55
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Production of a Double-Charm Baryon

X

SELEX  high xF < xF >= 0.33

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)

and anomalous moment κ = F2(0)

56
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Open and Hidden Charm Production Near 
Threshold

• Several Mechanisms for Inclusive Production:

57

p̄p→ J/ψX

p̄p→ DD̄X

p̄p→ ΛcDX

gg → cc̄ qq̄ → g → cc̄

cI + g → cg [cI + c̄I ] + g → J/ψ

ISI and FSI, Schwinger Sommerfeld Threshold Corrections 

57
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Important Tests of Intrinsic Charm

Measure diffractive hidden charm production
at forward xF

dσ
dtdxF

(pp→ p + J/ψ + X)

dσ
dt1dt2dxF

(pp→ p + J/ψ + p)

M2sim10 GeV2

s = 80 GeV2

x1x2 = .20, xF = x1 − x2

Measure diffractive hidden charm production
at forward xF

dσ
dtdxF

(pp→ p + J/ψ + X)

dσ
dt1dt2dxF

(pp→ p + J/ψ + p)

M2sim10 GeV2

s = 80 GeV2

x1x2 = .20, xF = x1 − x2

Measure diffractive hidden charm production
at forward xF

dσ
dtdxF

(pp→ p + J/ψ + X)

dσ
dt1dt2dxF

(pp→ p + J/ψ + p)

M2 " 10 GeV2

s = 80 GeV2

x1x2 = .20, xF = x1 − x2

(X)

Measure diffractive hidden charm production
at forward xF

dσ
dtdxF

(pp→ p + J/ψ + X)

dσ
dt1dt2dxF

(pp→ p + J/ψ + p)

Anomalous nuclear dependence

Aα(x2) versus Aα(xF )

M2 " 10 GeV2

Measure diffractive hidden charm production
at forward xF

dσ
dtdxF

(pp→ p + J/ψ + X)

dσ
dt1dt2dxF

(pp→ p + J/ψ + p)

Anomalous nuclear dependence

Aα(x2) versus Aα(xF )

M2 " 10 GeV2

Measure diffractive hidden charm production
at forward xF

dσ
dtdxF

(pp→ p + J/ψ + X)

dσ
dxF

(pA→ J/ψ + X)

dσ
dt1dt2dxF

(pp→ p + J/ψ + p)

Anomalous nuclear dependence

Aα(x2) versus Aα(xF )

Even close to threshold
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Intrinsic Charm Mechanism for 
Exclusive Diffraction Production

xJ/ψ = xc+ xc̄

Intrinsic cc̄ pair formed in color octet 8C in pro-
ton wavefunction
Collision produces color-singlet J/ψ through

color exchange

Kopeliovitch, Schmidt, Soffer, sjb

RHIC Experiment

Large Color Dipole

p p→ J/ψ p p

Exclusive Diffractive 
High-XF Higgs Production

59
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Remarkably Strong Nuclear 
Dependence for Fast Charmonium

M. Leitch

 Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.) ,  U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp. 

 Published in Phys.Lett.B246:217-220,1990

Violation of PQCD Factorization!
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dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

xF

A2/3 component

A1 component

Fits conventional PQCD subprocesses
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