Novel Electromagnetic and QCD Physics at FAIR and New Insights from $A d S / Q C D$

Stan Brodsky, SLAC

Ferrara Workshop on Electromagnetic Interactions at FAIR October 15-16, 2007

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics

Stan Brodsky
SLAC

The anti-proton beam

- Parallel operation for large physics programme
- FAIR will provide cooled antiproton beams from $0-15 \mathrm{GeV} / \mathrm{c}$
- High luminosity mode $\Delta p / p=10^{-4}$ with stochastic cooling, $\mathrm{L}=10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
-- Existing Facility
- HESR: $N_{p}=5 \times 10^{10}$
$1.5 \mathrm{GeV} / \mathrm{c}<$ pbeam $<15 \mathrm{GeV} / \mathrm{c}$
- New Facility
- High precision mode $\Delta p / p=3 \times 10^{-5}$ with electron cooling, $\mathrm{L}=10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

High Energy Storage Ring

-Storage ring for p :

- $N_{p}=5 \times 10^{10}, P_{\text {beam }}=1.5-15 \mathrm{GeV} / \mathrm{c}$;
-High density target:
- pellet 10^{15} atoms/cm ${ }^{3}$, cluster jet, wire;
-High luminosity mode:
- $\Delta \mathrm{p} / \mathrm{p}=10^{-4}$, stochastic cooling,
$\Delta \mathrm{p} / \mathrm{p}=10^{-4}$, stoc
$\mathrm{L}=10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} ;$
-High precision mode:
- $\Delta \mathrm{p} / \mathrm{p}=3 \times 10^{-5}$, electron cooling,
$\mathrm{L}=10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.

Andrey Sokolov

- Dipole magnet
- Quadrupole magnet

I Sextupole magnet

- Solenoid
- spacer for skew quad
a spacer for snake solenoid
- injection equipment

The PANDA Detector

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
5

Stan Brodsky
SLAC

FAIR Workshop October 15-16, 2007

Search for exotic states

Naive Quark Model:
Mesons (Resonances) $=q \bar{q}$-states
Baryons (Resonances) $=q q q$-states

$$
\bar{p} p \rightarrow \gamma+X[q \bar{q} \bar{q} q]
$$

LQCD + Model calculations:
Existence of exotic states

New feature:
Michael Düren
Spin-exotic quantum numbers possible, not allowed in $\bar{q} q\left(J^{P C}=0^{+-}, 1^{-+}, \ldots\right)$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
7

Stan Brodsky
SLAC

Why antiprotons?

Merits of antiprotons in hadron spectroscopy

- In $p \bar{p}$-annihilation all mesons can be formed

- In $e^{+} e^{-}$-annihilation only $J^{P C}=1^{-}$mesons can be formed directly

$$
\begin{aligned}
& \text { Production: } \\
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi^{\prime} \\
& \bigsqcup^{\gamma} \gamma \chi_{1,2} \\
& \rightarrow \gamma \gamma \mathrm{~J} / \psi \\
& \longrightarrow_{\rightarrow} \gamma \gamma \mathrm{e}^{+} \mathrm{e}^{-}
\end{aligned}
$$

- The comparison of results from $e^{+} e^{-}$and $p \bar{p}$ experiments allows important information about the quark and gluon content and the production mechanisms

Michael Düren

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
8

Stan Brodsky
SLAC

Charmonium - the Positronium of QCD

- Positronium

Binding energy [meV]

- Charmonium

- Precision measurements of masses, widths and branching ratios
- Test of QCD and relativistic potential models

Michael Düren

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
9

Stan Brodsky
SLAC

Merits of antiprotons in hadron spectroscopy High Resolution of M and Γ

- Crystal Ball: typical resolution ~ 10 MeV
- Fermilab: 240 keV
- PANDA: ~20 keV

Michael Düren

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
10

Stan Brodsky
SLAC

New Charmonium Resonances

- X(3872), Belle 09'2003, $1^{++}, \chi_{\mathrm{cl}}{ }^{\prime}$ or $\mathrm{D}^{0} \mathrm{D}^{*}$ molecule
- decays into $J / / / \pi^{+} \pi, J / \psi \pi^{+} \pi \pi^{0}, J / \psi \gamma, \mathrm{D}^{0} \mathrm{D}^{*}$
- $\mathrm{Y}(3940)$, Belle 09'2004, $\mathrm{JP}^{+}, 2^{3} \mathrm{P}_{1}$ or Hybrid??
- decays into $J / \psi \omega$
- Y(4260), BaBar 06'2005, 1--, $2^{3} \mathrm{D}_{1}$ (BaBar) or $4^{3} \mathrm{~S}_{1}$ (CLEO) or Hybrid
- decays into $\mathrm{e}^{+} \mathrm{e}^{-}, J / \psi \pi^{+} \pi, J / \psi \pi^{0} \pi^{0}, J / \psi K^{+} K^{-}$
- X(3943), Belle 07'2005, $0^{-+}, \eta_{c}{ }^{\prime \prime}$
- decays into $D^{0} D^{*}$
- Z(3934), Belle 07'2005, $2^{++}, \chi_{c 2}{ }^{\prime}$
- decays into $\gamma \gamma$, DD
- $\psi(4320)$, BaBar 06'2006, ?, Hybrid

The Drell-Yan process

- process complementary to DIS
- cross section directly related to parton distribution functions
- no fragmentation functions involved
- all valence quarks will contribute in anti-proton annihilation
- wealth of (spin)-observable:

B. Seitz

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
12

Stan Brodsky
SLAC

Elementary LO interaction:

$$
\begin{aligned}
& \frac{d^{2} \sigma}{d M^{2} d x_{F}}=\frac{4 \pi \alpha^{2}}{9 M^{2} s} \frac{1}{x_{1}+x_{2}} \sum_{a} e_{a}^{2}\left[q_{a}\left(x_{1}\right) \bar{q}_{a}\left(x_{2}\right)+\bar{q}_{a}\left(x_{1}\right) q_{a}\left(x_{2}\right)\right] \\
& x_{F}=x_{1}-x_{2} \quad x_{1} x_{2}=M^{2} / s \equiv \tau \quad x_{F}=2 Q_{L} / \sqrt{s}
\end{aligned}
$$

3 planes: plane \perp polarization vectors,
$p-\gamma^{*}$ plane, $\mu^{+} \mu^{-} \gamma^{*}$ plane \longmapsto many spin effects

Drell-Yan angular distribution

Unpolarized DY

Lam - Tung SR : $1-\lambda=2 \nu$
NLO pQCD : $\lambda \approx 1 \mu \approx 0 \nu \approx 0$
experiment : $\nu \approx 0.3$

- Experimentally, a violation of the Lam-Tung sum rule is observed by sizeable $\cos 2 \Phi$ moments
- Several model explanations
- higher twist
- spin correlation due to non-triva QCD vacuum
- Non-zero Boer Mulders function
$\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{3}{4 \pi} \frac{1}{\lambda+3}\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)$
B. Seitz

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
14

Stan Brodsky
SLAC

Measurement of Angular Distributions of Drell-Yan Dimuons in $p+d$ Interaction at $800 \mathrm{GeV} / \mathrm{c}$
(FNAL E866/NuSea Collaboration)

Parameter ν vs. p_{T} in the Collins-Soper frame for three Drell-Yan measurements. Fits to the data using Eq. 3 and $M_{C}=2.4 \mathrm{GeV} / \mathrm{c}^{2}$ are also shown.

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
15

Stan Brodsky
SLAC

Breakdown of Lam-Tung $2 \nu-(1-\lambda) \neq 0$

Huge Effect in $\pi W \rightarrow \mu^{+} \mu^{-} X$ Negligible Effect i $p d \rightarrow \mu^{+} \mu^{-} X$

FIG. 1: Parameters λ, μ, ν and $2 \nu-(1-\lambda)$ vs. p_{T} in the Collins-Soper frame. Solid circles are for E866 $p+d$ at 800 $\mathrm{GeV} / \mathrm{c}$, crosses are for NA10 $\pi^{-}+W$ at $194 \mathrm{GeV} / \mathrm{c}$, and diamonds are E615 $\pi^{-}+W$ at $252 \mathrm{GeV} / \mathrm{c}$. The error bars include the statistical uncertainties only.

FAIR Workshop
Novel Anti-Proton QCD Physics 16

Stan Brodsky
SLAC

Transversity

T-odd:
Require ISI or FSI

Boer-Mulders Function

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
17

Stan Brodsky
SLAC

The Drell-Yan process

- process complementary to DIS
- cross section directly related to parton distribution functions
- no fragmentation functions involved
- all valence quarks will contribute in anti-proton annihilation
- wealth of (spin)-observables

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} \propto \frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi
$$

$$
\nu \propto \sum_{\mathrm{q}} \mathrm{e}_{\mathrm{q}}^{2} \frac{\mathrm{~h}_{1}^{\perp} \overline{\mathrm{h}}_{1}^{\perp}}{\mathrm{f}_{1} \overline{\mathrm{f}}_{1}}
$$

> Transversity Test

$$
A_{T T} \propto \frac{\sum_{q} e_{q}^{2}\left(h_{1} \bar{h}_{1}\right)}{\sum_{q} e_{q}^{2}\left(f_{1} \bar{f}_{1}\right)}
$$

B. Seitz

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
18

Stan Brodsky
SLAC

$$
\begin{gathered}
A_{T T}=\frac{\mathrm{d} \sigma^{\uparrow \uparrow}-\mathrm{d} \sigma^{\uparrow \downarrow}}{\mathrm{d} \sigma^{\uparrow \uparrow}+\mathrm{d} \sigma^{\uparrow}}=\hat{a}_{T T} \frac{\sum_{q} e_{q}^{2}\left[h_{1 q}\left(x_{1}\right) h_{1 \bar{q}}\left(x_{2}\right)+h_{1 \bar{q}}\left(x_{1}\right) h_{1 q}\left(x_{2}\right)\right]}{\sum_{q} e_{q}^{2}\left[q\left(x_{1}\right) \bar{q}\left(x_{2}\right)+\bar{q}\left(x_{1}\right) q\left(x_{2}\right)\right]} \\
\bar{p}^{\uparrow} p^{\uparrow} \rightarrow \bar{\ell} \ell X \\
\hat{a}_{T T}=\frac{\mathrm{d} \hat{\sigma}^{\wedge} \uparrow}{\mathrm{d} \hat{\sigma}^{\uparrow \uparrow}+\mathrm{d} \hat{\sigma}^{\uparrow \downarrow} \hat{\sigma}^{\uparrow \downarrow}}=\frac{\sin ^{2} \vartheta}{1+\cos ^{2} \vartheta} \cos (2 \varphi)
\end{gathered}
$$

RHIC energies: $\sqrt{s}=200 \mathrm{GeV} \quad M^{2} \leq 100 \mathrm{GeV}^{2}$

$$
\begin{aligned}
& \tau \leq 2 \times 10^{-3} \quad \text { small } x_{1} \text { and/or } x_{2} \\
& h_{1 q}\left(x, Q^{2}\right) \text { evolution much slower than } \\
& \Delta q\left(x, Q^{2}\right) \text { and } q\left(x, Q^{2}\right) \text { at small } x \\
& A_{T T} \text { at RHIC is very small } \\
& \text { smaller s would help } \\
& \text { Barone, Calarco, Drago }
\end{aligned}
$$

Deep Inelastic Electron-Proton Scattering

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics

Stan Brodsky
SLAC

Deep Inelastic Electron-Proton Scattering

Conventional wisdom:
Final-state interactions of struck quark can be neglected

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 21

Stan Brodsky
SLAC

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
22

Stan Brodsky
SLAC

Final-State Interactions Produce

PseudoT-Odd (Sívers Effect)

- Leading-Twist Bjorken Scaling!
$\mathbf{i} \vec{S} \cdot \vec{p}_{j e t} \times \vec{q}$
- Requires nonzero orbital angular momentum of quark
- Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves; Wilson line effect; gauge independent
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD phase at soft scale: IR Fixed Point?

- New window to QCD coupling and running gluon mass in the IR
- QED S and P Coulomb phases infinite -- difference of phases finite

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 23

Stan Brodsky
SLAC

Conformal window Infrared fixed-point

$$
\beta\left(Q^{2}\right)=\frac{d \alpha_{s}\left(Q^{2}\right)}{d \log Q^{2}} \rightarrow 0
$$

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
24

Stan Brodsky
SLAC

can interfere

and produce a T-odd effect! (also need $L_{z} \neq 0$)

Hermes coll., A. Airapetian et al., Phys. Rev. Lett. 94 (2005) 012002.

Sivers asymmetry from HERMES

- First evidence for non-zero Sivers function!
- \Rightarrow presence of non-zero quark orbital angular momentum!
- Positive for π^{+}... Consistent with zero for π^{-}...

Gamberg: Hermes data compatible with BHS model

Schmidt, Lu: Hermes charge pattern follow quark contributions to anomalous moment

Stan Brodsky
SLAC

Predict Opposite Sign SSA in DY!

Collins;

Single Spin Asymmetry In the Drell Yan Process
$\vec{S}_{p} \cdot \overrightarrow{\bar{p}} \times \vec{q}_{\gamma^{*}}$
Quarks Interact in the Initial State
Interference of Coulomb Phases for S and P states
Produce Single Spin Asymmetry [Siver's Effect]Proportional
to the Proton Anomalous Moment and α_{s}.
Opposite Sign to DIS! No Factorization

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 26

Stan Brodsky
SLAC

Initial-state interactions and single-spin asymmetries in Drell-Yan processes *

Stanley J. Brodsky ${ }^{\text {a }}$, Dae Sung Hwang ${ }^{\text {a,b }}$, Ivan Schmidt ${ }^{\text {c }}$

Nuclear Physios B 642 (2002) 344-356

Here $\Delta=\frac{q^{2}}{2 P \cdot q}=\frac{q^{-}}{2 M y}$, where ν is the energy of the lepton pair in the target rest frame.

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
27

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

Measure single-spin asymmetry A_{N} in Drell-Yan reactions

Leading-twist Bjorken-scaling A_{N} from S, P-wave initial-state gluonic interactions

Predict: $A_{N}(D Y)=-A_{N}(D I S)$ Opposite in sign!
$Q^{2}=x_{1} x_{2} s$
$Q^{2}=4 \mathrm{GeV}^{2}, s=80 \mathrm{GeV}^{2}$

$$
p \bar{p}_{\uparrow} \rightarrow \ell^{+} \ell^{-} X
$$

$\vec{S} \cdot \vec{q} \times \vec{p}$ correlation
$x_{1} x_{2}=.05, x_{F}=x_{1}-x_{2}$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 28

Stan Brodsky
SLAC

DY $\cos 2 \phi$ correlation at leading twist from double ISI

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
29

Stan Brodsky
SLAC

DY $\cos 2 \phi$ correlation at leading twist from double ISI

Product of Boer -
Mulders Functions

$$
h_{1}^{\perp}\left(x_{1}, \boldsymbol{p}_{\perp}^{2}\right) \times \bar{h}_{1}^{\perp}\left(x_{2}, \boldsymbol{k}_{\perp}^{2}\right)
$$

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
30

Stan Brodsky
SLAC

DY $\cos 2 \phi$ correlation at leading twist from double ISI

Product of Boer .
Mutters
Functions

$$
h_{1}^{\perp}\left(x_{1}, \boldsymbol{p}_{\perp}^{2}\right) \times \bar{h}_{1}^{\perp}\left(x_{2}, \boldsymbol{k}_{\perp}^{2}\right)
$$

$$
F \equiv \mathcal{F}\left[\left(2 \hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{\perp} \hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{\perp}-\boldsymbol{p}_{\perp} \cdot \boldsymbol{k}_{\perp}\right) h_{1}^{\perp} \bar{h}_{1}^{\perp}\right]
$$

$$
-\frac{\sum_{a, \bar{a}} e_{a}^{2} F_{a}}{\sum_{a, \bar{a}} e_{a}^{2} G_{a}} .
$$

$$
=\int d^{2} \boldsymbol{p}_{\perp} d^{2} \boldsymbol{k}_{\perp} \delta^{2}\left(\boldsymbol{p}_{\perp}+\boldsymbol{k}_{\perp}-\boldsymbol{q}_{\perp}\right)\left(2 \hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{\perp} \hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{\perp}-\boldsymbol{p}_{\perp} \cdot \boldsymbol{k}_{\perp}\right)
$$

$$
\times h_{1}^{\perp}\left(\Delta, \boldsymbol{p}_{\perp}^{2}\right) \bar{h}_{1}^{\perp}\left(\bar{\Delta}, \boldsymbol{k}_{\perp}^{2}\right),
$$

$$
G \equiv \mathcal{F}\left[f_{1} \bar{f}_{1}\right]
$$

Boer, Huang, sib

$$
=\int d^{2} \boldsymbol{p}_{\perp} d^{2} \boldsymbol{k}_{\perp} \delta^{2}\left(\boldsymbol{p}_{\perp}+\boldsymbol{k}_{\perp}-\boldsymbol{q}_{\perp}\right) f_{1}\left(\Delta, \boldsymbol{p}_{\perp}^{2}\right) \bar{f}_{1}\left(\bar{\Delta}, \boldsymbol{k}_{\perp}^{2}\right),
$$

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 31

Stan Brodsky
SLAG

Double Initial-State Interactions generate anomatous $\cos 2 \phi$

Drell-Yan planar correlations

$$
\frac{1}{\sigma} \frac{d \sigma}{d \Omega} \propto\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)
$$

PQCD Factorization (Lam Tung): $1-\lambda-2 \nu=0$

Violates Lam-Tung relation!

$$
\pi N \rightarrow \mu^{+} \mu^{-} X \text { NA10 }
$$

Model: Boer,

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 32

Stan Brodsky
SLAC

Measurement of Angular Distributions of Drell-Yan Dimuons in $p+d$ Interaction at $800 \mathrm{GeV} / \mathrm{c}$
(FNAL E866/NuSea Collaboration)

Parameter ν vs. p_{T} in the Collins-Soper frame for three Drell-Yan measurements. Fits to the data using Eq. 3 and $M_{C}=2.4 \mathrm{GeV} / \mathrm{c}^{2}$ are also shown.

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
33

Stan Brodsky
SLAC

Anomalous effect from Double ISI in Massive Lepton Production

- Leading Twist, valence quark dominated
- Violates Lam-Tung Relation!
- Not obtained from standard PQCD subprocess analysis
- Normalized to the square of the single spin asymmetry in semiinclusive DIS
- No polarization required
- Challenge to standard picture of PQCD Factorization

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 34

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

$\cos 2 \phi$ correlation in DY from double ISI

Abstract
We show that initial-state interactions contribute to the $\cos 2 \phi$ distribution in umpolarized Drell-Yan lepton pair production $p p$ and $p \bar{p} \rightarrow \ell^{+} \ell^{-} X$, withont suppression. The asymmetry is expressed as a product of chiral-odd distributions $h_{1}^{\perp}\left(x_{1}, p_{\perp}^{2}\right) \times h_{1}^{\perp}\left(x_{2}, k_{\perp}^{2}\right)$, where the quark-transversity function $h_{1}^{\perp}\left(x, p_{\perp}^{2}\right)$ is the transverse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an urpolarized proton. We compute this (naive) T-odd and chiral-odd distribution function and the resulting $\cos 2 \phi$ asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction In this model the function $h_{1}^{\frac{1}{1}}\left(x, \boldsymbol{p}_{\perp}^{2}\right)$ equals the T-odd (chiral-even) Sivers effect function $f_{12}^{\perp}\left(x, p_{\perp}^{2}\right)$. This suggests that the single-spin asymmetries in the SIDIS and the Drell-Yan process are closely related to the cos 2ϕ asymmetry of the unpolarized Drell-Yan process, since all can arise from the same underlying mechanism. This provides new insight regarding the role of quark and ghon orbital angular momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics

Stan Brodsky
SLAC

$\cos 2 \phi$ correlation for quarkonium production at leading twist from double ISI

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
36

Stan Brodsky
SLAC

Bremsstrahlung Contribution to Lepton Pair Production

Possibly Dominant Contribution to Di-muon Pair Production in $p p \rightarrow \mu^{+} \mu^{-} X$ $\alpha_{s}(t)$ at $\sqrt{-t}_{\text {min }} \simeq \frac{Q^{2}}{2 p_{\text {lab }}}=\frac{M Q^{2}}{s}$

Explains why ν is small at high s ?
Feng Yuan and sjb

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
37

Stan Brodsky
SLAC

$\cos 2 \phi$ correlation for quarkonium production at leading twist from double ISI Enhanced by gluon color charge

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
38

Stan Brodsky
SLAC

Problem for factorization when both ISI and FSI occur

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
39

Stan Brodsky
SLAC

Factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.

The exchange of two extra gluons, as in this graph, will tend to give non-factorization in unpolarized cross sections.

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
40

Stan Brodsky
SLAC

$\cos 2 \phi$ correlation for quarkonium production at leading twist from double ISI
Enhanced by gluon color charge Also possible FSI

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
41

Stan Brodsky
SLAC

Physics of Rescattering

- Diffractive DIS: New Insights into Final State Interactions in QCD
- Origin of Hard Pomeron
- Structure Functions not Probability Distributions!
- T-odd SSAs, Shadowing, Antishadowing
- Diffractive dijets/ trijets, doubly diffractive Higgs
- Novel Effects: Color Transparency, Color Opaqueness, Intrinsic Charm, Odderon

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 42

SLAC

Remarkable observation at HERA

Fraction r of events with a large rapidity gap, $\eta_{\max }<1.5$, as a function of Q_{DA}^{2} for two ranges of x_{DA}. No acceptance corrections have been applied.
M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993).

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
43

Stan Brodsky
SLAC

Final-State Interaction Produces Dúffractive DIS

Low-Nussinov model of Pomeron

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 44

Stan Brodsky
SLAC

QCD Mechanism for Rapidity Gaps

Reproduces lab-frame color dipole approach

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
45

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

Double-Diffractive Drell-Yan

$$
\bar{p} p \rightarrow \bar{p}+\ell^{+} \ell^{-}+p
$$

Large-Mass Timelike Muon Pairs in Hadronic Interactions S. M. Berman*, D. J. Levy, and T. L. Neff§

Prototype for exclusive Higgs production

$$
\pi \mathrm{N} \rightarrow \mu^{+} \mu^{-} \mathrm{X} \text { at high } \mathrm{x}_{\mathrm{F}}
$$

In the limit where $\left(1-\mathrm{x}_{\mathrm{F}}\right) \mathrm{Q}^{2}$ is fixed as $\mathrm{Q}^{2} \rightarrow \infty$

Dírect Higher Twist Subprocess

Entire pion wf contributes to hard process

Berger and Brodsky, PRL 42 (1979) 940

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
47

Stan Brodsky
SLAC

$$
\pi^{-} N \rightarrow \mu^{+} \mu^{-} X \text { at } 80 \mathrm{GeV} / c
$$

$$
\frac{d \sigma}{d \Omega} \propto 1+\lambda \cos ^{2} \theta+\rho \sin 2 \theta \cos \phi+\omega \sin ^{2} \theta \cos 2 \phi
$$

$$
\frac{d^{2} \sigma}{d x_{\pi} d \cos \theta} \propto x_{\pi}\left(\left(1-x_{\pi}\right)^{2}\left(1+\cos ^{2} \theta\right)+\frac{4}{9} \frac{\left\langle k_{T}^{2}\right\rangle}{M^{2}} \sin ^{2} \theta\right)
$$

$$
\left\langle k_{T}^{2}\right\rangle=0.62 \pm 0.16 \mathrm{GeV}^{2} / c^{2}
$$

Dramatic change in angular distribution at large XF

Example of a higher-twist direct subprocess

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 48

Stan Brodsky
SLAC

Berger, Lepage, sjb

$$
\pi q \longrightarrow \gamma^{*} q
$$

Initial State Interaction

Pion appears directly in subprocess at large x_{F}

 All of the pion's momentum is transferred to the lepton pair Lepton Pair is produced longitudinally polarizedFAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
49

Stan Brodsky
SLAC

$$
A(1-x)^{3}\left(1+\cos ^{2} \theta\right)+B \frac{(1-x) \sin ^{2} \theta}{Q^{2}}+C \frac{\left(1+\cos ^{2} \theta\right)}{(1-x) Q^{4}}
$$

$[\bar{q} \bar{q}] q \rightarrow \gamma^{*} \bar{q}$

Diquark appears directly in subprocess
All of the diquark's momentum is transferred to the lepton pair Lepton Pair is produced longitudinally polarized

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 50

Stan Brodsky
SLAC

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks,

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

Fixed LF time
FAIR Workshop
Novel Anti-Proton QCD Physics

Intrinsic Heavy-Quark Fock States

- Rigorous prediction of QCD, OPE
- Color-Octet Color-Octet Fock State!

- Probability $\quad P_{Q \bar{Q}} \propto \frac{1}{M_{Q}^{2}} \quad P_{Q \bar{Q} Q \bar{Q}} \sim \alpha_{s}^{2} P_{Q \bar{Q}} \quad P_{c \bar{c} / p} \simeq 1 \%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production (Kopeliovich, Schmidt, Soffer, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin, Tung)
- Many empirical tests

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 52

Stan Brodsky
SLAC

DGLAP / Photon-Gluon Fusion: factor of 30 too small

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 53

Stan Brodsky
SLAC

- EMC data: $c\left(x, Q^{2}\right)>30 \times$ DGLAP $Q^{2}=75 \mathrm{GeV}^{2}, x=0.42$
- High $x_{F} p p \rightarrow J / \psi X$
- High $x_{F} p p \rightarrow J / \psi J / \psi X$
- High $x_{F} p p \rightarrow \Lambda_{c} X$
- High $x_{F} p p \rightarrow \wedge_{b} X$
- High $x_{F} p p \rightarrow$ 三($c c d$) X (SELEX)
C.H. Chang, J.P. Ma, C.F. Qiao and X.G.Wu, Hadronic production of the doubly charmed baryon $X i / c c$ with intrinsic charm," arXiv:hep-ph/o610205.

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
54

Stan Brodsky
SLAC

Leading Hadron Production from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 55

Stan Brodsky
SLAC

Production of a Double-Charm Baryon SELEX high $\mathbf{x}_{\mathbf{F}} \quad\left\langle x_{F}\right\rangle=0.33$

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics 56

Stan Brodsky
SLAC

Open and Hidden Charm Production Near Threshold

$$
\begin{aligned}
\bar{p} p & \rightarrow J / \psi X \\
\bar{p} p & \rightarrow D \bar{D} X \\
\bar{p} p & \rightarrow \Lambda_{c} D X
\end{aligned}
$$

- Several Mechanisms for Inclusive Production:

$$
\begin{array}{cc}
g g \rightarrow c \bar{c} & q \bar{q} \rightarrow g \rightarrow c \bar{c} \\
c_{I}+g \rightarrow c g & {\left[c_{I}+\bar{c}_{I}\right]+g \rightarrow J / \psi}
\end{array}
$$

ISI and FSI, Schwinger Sommerfeld Threshold Corrections

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics

Stan Brodsky
SLAC

Key QCD Experiment at FAIR

Measure diffractive hidden charm production Even close to threshold at forward x_{F}

$$
\begin{gathered}
\frac{d \sigma}{d t_{1} d t_{2} d x_{F}}(\bar{p} p \rightarrow \bar{p}+J / \psi+p) \\
\frac{d \sigma}{d t d x_{F}}(\bar{p} p \rightarrow \bar{p}+J / \psi+X)
\end{gathered}
$$

Anomalous nuclear dependence

$$
\begin{aligned}
& \frac{d \sigma}{d x_{F}}(\bar{p} A \rightarrow J / \psi+X) \\
& A^{\alpha\left(x_{2}\right)} \text { versus } A^{\alpha\left(x_{F}\right)} \\
& \text { Important Tests of Intrinsic Charm }
\end{aligned}
$$

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics 58

Stan Brodsky
SLAC

Intrinsic Charm Mechanism for Exclusive Díffraction Production

$$
\begin{gathered}
\mathrm{p} \mathrm{p} \rightarrow J / \psi p p \\
x_{J / \psi}=x_{c}+x_{\bar{c}}
\end{gathered}
$$

Exclusive Diffractive High- X_{F} Higgs Production

Kopeliovitch, Schmidt, Soffer, sjb

Intrinsic $c \bar{c}$ pair formed in color octet 8_{C} in proton wavefunction Large Color Dipole

Collision produces color-singlet J / ψ through color exchange

RHIC Experiment

FAIR Workshop October 15-16, 2007

Novel Anti-Proton QCD Physics
59

Stan Brodsky
SLAC

Violation of factorization in charm hadroproduction.
P. Hoyer, M. Vanttinen (Helsinki U.) , U. Sukhatme (Illinois U., Chicago) . HU-TFT-90-14, May 1990. 7pp.

Published in Phys.Lett.B246:217-220,1990

FAIR Workshop
October 15-16, 2007

Novel Anti-Proton QCD Physics
60

Stan Brodsky
SLAC

