FAIR Antiproton Source-Design Considerations

- o Requirements and Promises (CDR 2001 and FBTR 2006)
- FAIR Accelerator Complex for pbar Beams
- o Topology near Antiproton Source & Antiproton Separator
- o Physics of Antiproton Production
 - Invariant Inclusive Production Cross Section
 - Double Differential Laboratory Cross Section and Production Density
 - > Yield Dependence on
 - Proton energy
 - pbar Momentum
 - pbar Emission Angle
 - Target Material
- o Technical Concept (FBTR), see Talk by Peter Sievers
- o Potential for Future Upgrades at FAIR?

Requirements and Promises FBTR and CDR

Internal target experiments at HESR

Average Luminosity Consumption rate for pbar → p

Primary proton beam from SIS100

Kinetic energy Cycle time SIS100 Protons per bunch

Transverse beam emittances Momentum spread Bunch length

Repetition rate

 \mathcal{L}_{max} = 1.4×10³² (CDR: 2×10³²) cm⁻² s⁻¹ $R_{cons.}$ = 1.4×10⁷ (CDR: 2×10⁷) s⁻¹

29 GeV 3s (CDR 2 s) 3.8×10^{13} (CDR: 2.8×10^{13}) 5 (h) / 3 (v) mm mrad (2 σ) $\delta p/p = \pm 0.7 \%$ (2 σ)

25 ns

0.1 Hz (CDR: 0.2Hz)

Phase space acceptance of Collector Ring CR

Transverse acceptance Momentum acceptance Cooling & stacking time $A_{x,y} = 200 \text{ mm mrad}$ $\Delta p/p = \pm 3 \%$ 10 s (CDR: 5 s)

FAIR Accelerator Complex for pbar Beams (FBTR 2006)

December 15, 2006 - Ferrara

Topology near Antiproton Source

(Status 2005, new layout by S. Ratschow underway)

Magnetic Separator Layout

Sebatian Ratschow, GSI,2005

Magnetic Separator Layout

(Sebastian Ratschow, GSI, old design, 2005)

Physics of Antiproton Production

Usual description:

Lorentz invariant inclusive cross section:

$$E^* \frac{d^3 \sigma_{\overline{p}}^*}{d(p^*)^3} = E \frac{d^3 \sigma_{\overline{p}}}{d p^3} = f(p_{\perp}, x_{\mathrm{R}}, s)$$
c.m.s. lab.s.

 $p_{\perp}^{*} = p_{\perp} = p \theta$ [transverse antiproton momentum] $s = (E_{tot}^{*})^{2} = 2m_{p} c^{2} (m_{p} c^{2} + E_{p}) [E_{tot}^{*} = totalc.m.energy, E_{p} = primary proton energy]$ $x_{R} = E^{*} / E_{max}^{*}$ [radial scaling variable, $E^{*} = pbar$ energy in c.m.s.] $E_{max}^{*} = (s - 8m_{p}^{2} c^{4}) / (2E_{tot}^{*})$ [maximum possible c.m. energy of pbar]

Empirical pbar Invariant Production Cross Section

Latest publication with best fit to all available experimental results, especially at lower proton energies down to a few GeV : R.P. Duperray et al., Phys. Rev. **D** 68, 094017 (2003) :

$$E^* \frac{d^3 \sigma_{\overline{p}}^*}{d(p^*)^3} = \sigma_{abs} A C_1 P_{\perp} \ln(\sqrt{s}/C_2) (1 - x_R)^{C_3 \ln(\sqrt{s})} e^{-C_4 x_R} \times \left(C_5 (\sqrt{s})^{C_6} e^{-C_7 P_{\perp}} + C_8 (\sqrt{s})^{C_9} e^{-C_{10} P_{\perp}^2} \right)$$

 $\sigma_{abs} = \sigma_{abs}^* = \text{total inelastic c.s.} (absorption c.s.)$

Parameter	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	C ₄	<i>C</i> ₅	<i>C</i> ₆	<i>C</i> ₇	<i>C</i> ₈	<i>C</i> ₉	<i>C</i> ₁₀
Value	0.167	10.28	2.27	3.707	0.0092	0.4812	3.36	0.06394	-0.1824	2.4850

Older formulae:

C. Hojvat and A. Van Ginneken, Calculation of Antiproton Yields for the Fermilab Antiproton Source,

Nucl. Instr. Meth. 206, 67 (1983)

A.N. Kalinovski, M.V. Mokhov, et al., *Passage of High Energy Particles through Matter*, AIP, New York, 1989, Chap. 3 (1989) applied in MARS-Code

Total Absorption Cross Section

S.P. Denisov et al., Absorption Cross Sections for Pions, Kaons, Protons and Antiprotons on Complex Nuclei in the 6 to 60 GeV/c Momentum Range, Nucl. Phys. **B 61**, 62 (1973) See also: J.R. Letaw et al., Astropart. J. Suppl. Ser. **51**, 271 (1983)

Lorentz Invariant Production C.S. vs. Proton Energy

Lorentz Invariant Production C.S. vs. pbar Momentum

Laboratory Production Cross Section and Yield

Double differential production cross section in the laboratory system:

Double differential yield per primary proton:

$$\frac{\mathrm{d}^2 N_{\overline{p}}}{\mathrm{d} \, p \, \mathrm{d} \Omega} = \frac{1}{\sigma_{\mathrm{abs}}(p)} \quad \frac{\mathrm{d}^2 \, \sigma_{\overline{p}}}{\mathrm{d} \, p \, \mathrm{d} \Omega}$$

Definition of invariant production density:

$$W(p,\theta) = \frac{2E}{p^2} \frac{\mathrm{d}^2 N_{\overline{p}}}{\mathrm{d} \, p \, \mathrm{d}\Omega}$$

December 15, 2006 - Ferrara

Production C.S. in Laboratory System

Invariant production Density

Dependence on Emission Angle

Integration over Momentum and Angular Acceptance

$$k = \int_{-\Delta p}^{+\Delta p} \int_{\Omega=0}^{\Omega_{\text{max}}} \frac{\mathrm{d}^2 N_{\overline{p}}}{\mathrm{d} \, p \, \mathrm{d} \, \Omega} \, \mathrm{d} \, p \, \mathrm{d} \, \Omega \approx 2 \, p \frac{\Delta p}{p} \, \pi \left(\theta_{\text{max}}\right)^2 \, \left| \frac{\mathrm{d}^2 N_{\overline{p}}}{\mathrm{d} \, p \, \mathrm{d} \, \Omega} \right|_{\Delta p=0, \, 2\theta_{\text{max}}/3}$$

The variation of $d^2 N_{pbar}/dp d\Omega$ over the momentum acceptance of ±3% is very small. Therefore, we can apply the value at Δp =0, 20max/3.

Differential Antiproton Yield

Differential pbar Yield for Diff. Proton Energies

Differential Equation for Yield vs. Target Length

$$\frac{\mathrm{d}N_{\overline{p}}(x)}{\mathrm{d}x} = k \frac{N_{p}(x)}{\lambda_{p}} - \frac{N_{\overline{p}}(x)}{\lambda_{\overline{p}}}$$

with the interaction lengths

 $\lambda_{p} = \frac{A}{L\rho \sigma_{abs}(p)} \quad \text{for protons}$ $\lambda_{\overline{p}} = \frac{A}{L\rho \sigma_{abs}(\overline{p})} \quad \text{for antiprotons (anihilation)}$ Solution: $N_{\overline{p}}(x) = k \frac{\lambda_{\overline{p}}}{\lambda_{p} - \lambda_{\overline{p}}} e^{-\frac{x}{\lambda_{p}}} \left(1 - e^{x \frac{\lambda_{p} - \lambda_{\overline{p}}}{\lambda_{p} \lambda_{\overline{p}} \lambda_{\overline{p}}}}\right) \quad \text{for } \lambda_{\overline{p}} \neq \lambda_{p}$

$$N_{\overline{p}}(x) = k \frac{x}{\lambda_p} e^{-\overline{\lambda_p}} \text{ for } \lambda_{\overline{p}} = \lambda_p$$

December 15, 2006 - Ferrara

Bernhard Franzke

Antiproton Yield in Cu and Ir

Antiproton Yield in Cu and Ir by FLUKA

(by A.B. Plotnikov Nov. 2006)

Antiproton Yield in Various Targets

Antiproton Yield at Different Proton Energies

Antiproton Yield at Different pbar Momenta

Meson Spectrum from $p \rightarrow p$ Collisions (Allaby et al., 1970)

Energy Deposition in Ir Target

(by N. Tahir, Aug. 2006, from FLUKA-Output)

Temperature in Ir Target

(by N. Tahir, Aug. 2006, from FLUKA-Output)

Pressure in Ir Target (by N. Tahir, Aug. 2006, from FLUKA-Output)

Production Target : ACOL-Target for FAIR?

Production Target Upgrade: Liquid Metal Target?

Schematic diagram of the mercury jet target - laboratory test Proposed

Liquid metal target for FAIR up to 100% p-intensity Expectations

Should withstand beam periods up to 6 months

Constant target thickness

In situ cleaning from radio-active species possible Combined function target/collection lens? (CERN)

High-speed photographs of mercury jet target for CERN-PS-AA (laboratory tests) 4,000 frames per second, Jet speed: 20 ms-1, diameter: 3 mm, Reynold's Number:>100,000 A.Poncet

Liquid target R&D	
Li	SNS, ANL, FZK
Нд	CERN
Pb-Bi	BINP/Novosibirsk

Cost estimate for Hg-target: 160 000 € Investment for 2 units recommended **R&D necessary!**

Collector: Magnetic Horn and (or?) Li-Lens

Proposed upgrade for 100% proton intensity:						
3cm \varnothing Li-lens with 1 MA pulser						
Operational parameters						
Current	1 MA					
Rise time	1 ms					
Acceptance angle for pbars	95 mrad					
Manufacturing costs per lens:	80 000 €					
5 spare lenses recommended						
(P. Sievers, CERN, private communication, July 2005)						
1 MA pulser & transformer:	300 000 €					
My own estimate!						

December 15, 2006 - Ferrara

Antiproton Source at CERN - Example for FAIR?

Distribution over Transverse Phase Planes

(MARS simulation by P. Shatunov, 2005)

Transverse Matching to pbar Separator and CR (by P. Shatunov, 2005)

December 15, 2006 - Ferrara

Bernhard Franzke

Potential for pbar Upgrades at FAIR

Proton Linac

>Later upgrade not possible (New linac for 200 MeV, 140 mA, costs about 60 M€)

> SIS18/SIS100

>1×10¹³ instead of 5×10^{12} per SIS18-cycle would reduce the cycle time for SIS100 from 3 s to 2 s. The space charge limit at 2 GeV is about 4×10^{13} !

pbar Source

>Optimization of target and collector (e.g. 10 T/cm Li-lense): up to 50%.

> pbar Separator

>Careful corrections of chromaticity and other higher order effects: about 20%.

> CR

>Upgrade of stochastic pre-cooling for the reduction of the cooling time by a factor of 3 should be possible. Probable costs about 5 M€.

> RESR

>Stochastic accumulation in the RESR would have to be be upgraded accordingly. Probable costs about 10 M \in .

Summary

We see potential for later upgrades of the pbar production rate at FAIR by up to a factor of 5 compared to that given in the FBTR, i. e. from $1.4 \times 10^7 \text{ s}^{-1}$ to $7 \times 10^7 \text{ s}^{-1}$!

Probable costs 15 M€.

How this possible production upgrade can be transformed to a corresponding luminosity upgrade in HESR will not least depend on the technical design of this ring.